A wire loop with 3030 turns is formed into a square with sides of length ss . The loop is in the presence of a 1.20 T1.20 T uniform magnetic field B⃗ B→ that points in the negative yy direction. The plane of the loop is tilted off the x-axisx-axis by θ=15∘θ=15∘ . If i=1.10 Ai=1.10 A of current flows through the loop and the loop experiences a torque of magnitude 0.0256 N⋅m0.0256 N⋅m , what are the lengths of the sides ss of the square loop, in centimeters?

Answers

Answer 1

Answer:

2.59 cm

Explanation:

The torque τ on a current carrying loop of wire is given by τ = NiABsinθ where N = number of turns of loop, i = current in loop, A = area of loop and B = magnetic field.

Now, given that τ = 0.0256 Nm, i = 1.10 A, B = 1.20 T,N = 30 and since the loop is tilted 15° off the x-axis and the magnetic field points in the negative y- direction, the angle between the normal to the loop and the magnetic field is thus 90° - 15° = 75°. So, θ = 75°.

We now find the area of the loop A from

τ = NiABsinθ

A = τ/NiBsinθ

substituting the values of the variables, we have

A = 0.0256 Nm/30 × 1.10 A × 1.20 T × sin75°

A = 0.0256 Nm/38.25

A = 6.69 × 10⁻⁴ m²

Since the loop is a square, with length of side L, its area A = L² and

L = √A

= √(6.69 × 10⁻⁴ m²)

= 2.59 × 10⁻² m

converting to cm, we have

L = 2.59 × 10⁻² m × 100 cm/m

L = 2.59 cm

So, the lengths of sides of the loop is 2.59 cm


Related Questions

How much voltage (in terms of the power source voltage bV) will the capacitor have when it has started at zero volts potential difference, it is connected to the power supply and resistor and onehalf the characteristic time has passed (i.e. t= T(tau)/2)?

Answers

Answer:

The voltage is   [tex]V =   0.993V_b[/tex]

Explanation:

From the question we are told that

   The time that has passed is  [tex]t = \frac{\tau}{2}[/tex]

 Here [tex]\tau[/tex] is know as the time constant

    The voltage of the  power source is   [tex]V_b[/tex]

Generally the voltage equation for charging a capacitor is mathematically represented as

       [tex]V =  V_b  [1 - e^{- \frac{t}{\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{\tau}{2\tau} }][/tex]

=>   [tex]V =  V_b  [1 - e^{- \frac{1}{2} }][/tex]

=>   [tex]V =   0.993V_b[/tex]    

You release a ball from rest at the top of a ramp. 6 s later it is moving at 4.0
m/s. What is the acceleration? (in meters per second squared) *
Your answer

Answers

[tex]a = \frac{vf - vi}{t} [/tex]

here initial velocity vi=0 as ball release from rest

the final velocity is vf=4.0

time is t=6

so putting all these values in above equation

[tex]a = \frac{ 4.0- 0}{6} [/tex]

[tex]a = 0.6667m \s {}^{2} [/tex]

What are two ways that an object can have kinetic energy?

Answers

Answer:

The object has to have mass and speed

Explanation:

You can increase both speed and mass to increase the kinetic energy, hope this answers your question.

Happy Halloween!

An FM radio station, 20 miles away, broadcast at a 93.4 MHz frequency(a) What is the wavelength of the radio wave associated with this signal ?(b) How long does it take for the signal to reach your radio from the station ?

Answers

Answer:

(a) Wavelength = 3.21 m (b) Time = [tex]1.07\times 10^{-4}\ s[/tex]

Explanation:

Given that,

The frequency of FM radio station, f = 93.4 MHz

(a) We need to find the wavelength of the radio wave associated with this signal. The relation between wavelength and frequency is given by :

[tex]c=f\lambda\\\\\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{93.4\times 10^6}\\\\\lambda=3.21\ m[/tex]

(b) It is given that, an FM radio station, 20 miles away. Let t is time taken for signal to reach your radio from the station. So,

[tex]t=\dfrac{d}{c}\\\\t=\dfrac{20\times 1609.34}{3\times 10^8}\\\\t=1.07\times 10^{-4}\ s[/tex]

Hence, this is the required solution.

help me get the answer in Physical Science.

Answers

Answer:

lithium

Explanation:

I took physical science 2 years ago and passed with an A

If you weigh 660 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 20.0 km? Take the mass of the sun to be 1.99×10^30, the gravitational constant to be G = 6.67×10^−11Nm^2/kg^2, and the acceleration due to gravity at the earth's surface to be g = 9.810 m/s^2.p

Answers

Answer:

8.93*10^13 N.

Explanation:

Assuming that in this case, the weight is just the the force exerted on you by the mass of the star, due to gravity, we can apply the Universal Law of Gravitation:

       [tex]F_{g}= \frac{G*m_{1}*m_{s}}{r_{s}^{2} }[/tex]

where, m1 = mass of  the man = 660 N / 9.81 m/s^2 = 67.3 kg, ms = mass of the star = 1.99*10^30 kg, G= Universal Constant of Gravitation, and rs= radius of the star = 10.0 km. = 10^4 m.Replacing by the values, we get:

       [tex]F_{g}= \frac{6.67e-11Nm^2/kg^2*1.99e30 kg*67.3 kg}{10e4m^2} = 8.93e13 N[/tex]

Fg = 8.93*10^13 N.

Vector A has a magnitude of 6.0 m and points 30° north of east. Vector B has a magnitude of 4.0 m and points 30° west of south. The resultant vector A+ B is given by

Answers

Answer:

The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].

Explanation:

Let [tex]\vec A = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})[/tex] and [tex]\vec B = 4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex], both measured in meters. The resultant vector [tex]\vec R[/tex] is calculated by sum of components. That is:

[tex]\vec R = \vec A+\vec B[/tex] (Eq. 1)

[tex]\vec R = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})+4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex]

[tex]\vec R = (6\cdot \cos 30^{\circ}-4\cdot \sin 30^{\circ})\,\hat{i}+(6\cdot \sin 30^{\circ}-4\cdot \cos 30^{\circ})\,\hat{j}[/tex]

[tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex]

The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].

The forces exerted on an object are shown. (3 points)

A box has an arrow pointing up labeled F and an arrow pointing down labeled 3 N.

If the net force on the object along the vertical plane is zero, which statement is correct?
F equals 3 N and the object moves up.
F equals 3 N and the object remains stationary.
F equals 0 N and the object moves down.
F equals 0 N and the object remains stationary.

Answers

Answer:

F equals 3 N and the object remains stationary. (second option in the list)

Explanation:

For sure to cancel acting forces, F must be 3N pointing up. But with regards to the object stationary or not, the question is tricky. We could have a ZERO net force applied, and the object moving at constant speed, which could still verify Newton's Laws. But considering the first answer option that refers to vertical motion upward where the object could be gaining potential energy, the most accurate response is that the force F has to be 3 N pointing up to make the object in equilibrium, and no motion in the vertical axis.

Answer: F equals 3 N and the object remains stationary.

Explanation:

Momentum of the 2 kg mass moving with velocity 10 m/s is *

A. 2 kg*m/s
B. 20 kg*m/s
C. 200 kg*m/s
D. 20000 kg*m/s

Answers

20 kg*m/s because there is 2 kg mass and 10 m/s so you can multiply.

A force of 41 N acts on an object which has a mass of 2.4 kg. What acceleration (in m/s2) is produced by the force

Answers

Answer:

The acceleration is [tex] a =  17.083 \ m/s^2 [/tex]

Explanation:

From the question we are told that

   The force is [tex]F =  41 \  N[/tex]

     The mass of the object is [tex]m  =  2.4 \  kg[/tex]

Generally the force is mathematically represented as

        [tex]F  =  m*  a[/tex]

=>      [tex] 41  = 2.4*  a[/tex]

=>      [tex] a =  17.083 \ m/s^2 [/tex]

Two students measured the length of the same stick, each using a different 30 cm ruler. One student reported a length of 22 cm, and the other reported a length of 8 cm. The most likely explanation for the difference in the reported values is that one —

A. *student improperly read the ruler

B. ruler was metal and the other ruler was plastic

C. student viewed the ruler from a different angle

D. ruler was constructed with nonstandard cm marks

Answers

Answer:

C. student viewed the ruler from a different angle

Explanation:

It is the problem of viewing the scale from different sides or angles. If we assume the actual length of the stick to be 22 cm. Then the first student measured the length by reading the values from 1 cm towards 22 cm on the scale. While, the second student measured the length of the stick by reading the values from the other side or the other angle of the scale, that is, from 30 cm mark towards 1 cm. And in that case the the length of the 22 cm long stick will appear  as:

30 cm - 22 cm = 8 cm

Therefore, the second student read 8 cm on scale. So, the correct option is:

C. student viewed the ruler from a different angle

A coin rests on a record 0.15 m from its center. The record turns on a turntable that rotates at variable speed. The coefficient of static friction between the coin and the record is 0.30.

Required:
What is the maximum coin speed at which it does not slip?

Answers

Answer:

0.66m/s

Explanation:

We are expected to solve for the velocity with no slip condition

we know that the expression that relate coefficient of friction and velocity is given as

μs = v^2/rg

Given

coefficient of friction μs = 0.3

radius r= 0.15

assume g=9.81m/s^2

substituting into the expression we have

0.3= v^2/0.15*9.81

v^2=0.3*0.15*9.81

v^2=0.44145

v=√0.44145

v=0.66

therefore the velocity is 0.66m/s

A small compass is held horizontally, the center of its needle has a distance of 0.270 m directly north
of a long wire that is perpendicular to the Earth's surface. When there is no current in the wire, the
compass needle points due north, which is the direction of the horizontal component of the Earth's
magnetic field at that location. This component is parallel to the Earth's surface. When the current in
the wire is 26.3 A, the needle points 22.9∘ east of north.
(a) Does the current in the wire flow toward or away from the Earth's surface? ( 2 marks)
(b) What is the magnitude of the horizontal component of the Earth's magnetic field at the location of
the compass? (3 marks)

Answers

Answer:

Explanation:

The needle is showing north south direction . when current starts flowing in the wire which is held vertical to the ground , it deflects towards east .

a )

Therefore a magnetic field towards east has been created . It is possible only if current flows towards the surface in the vertical wire .

b )

magnetic field created at the magnetic needle B = 10⁻⁷ x  2I / d where I is current and d is distance .

B = 10⁻⁷ x  2 x 26.3  / .27

= 194.81 x 10⁻⁷ T

angle of deflection of solenoid = 22.9°

Tan 22.9 = B /H

.422 = 194.81 x 10⁻⁷ / H

H = 461.63 x 10⁻⁷ T

= .46 x 10⁻⁴ T .

A) The current in the wire flows towards the Earth's surface

B) The magnitude of the horizontal component of the Earth's magnetic field is :   0.46 x 10⁻⁴ T

A) The compass needle held horizontally points in a North-south direction of the earth and also deflects eastwards when current is allowed to flow through it. The deflection of the needle indicates the presence/generation of a magnetic field on the earth surface. which is facilitated by the flow of the current in the wire towards the Earth's surface

B) Determine The magnitude of the horizontal component of the Earth's magnetic field

B ( magnetic field ) = 10⁻⁷ * 2I / d ---- ( 1 )

where : l = 26.3 A,   d = 0.27 m

Back to equation ( 1 )

B = 10⁻⁷ * 2 * 26.3 / 0.27

  = 194.81 * 10⁻⁷ T

Final step : Calculate the magnitude of horizontal component  ( H )

Tan ∅ = B / H ---- ( 2 )

where : ∅ ( angle of deflection ) = 22.9°

∴ H = B / Tan ( 22.9° )

      = (  194.81 * 10⁻⁷ ) / 0.422

      = 0.46 x 10⁻⁴ T

Hence we can conclude that The current in the wire flows towards the Earth's surface and  The magnitude of the horizontal component of the Earth's magnetic field is :   0.46 x 10⁻⁴ T

Learn more about Earth magnetic field : https://brainly.com/question/115445

Two equal forces act on two different objects, one of which has a mass ten times as large as the other. The larger object will have _________ acceleration that the less massive object.

Answers

Answer:

The larger object will have smaller  acceleration that the less massive object.

Explanation:

Generally force is mathematically represented as

      [tex]F = ma[/tex]

=>  [tex]m = \frac{F}{a }[/tex]

at constant  force  we have

     [tex]m \ \alpha \ \frac{1}{a}[/tex]

So if  m is  increasing a will be decreasing which means the object with the larger mass will have less acceleration

If the shoe has less mass, it will experience _______________ (more, less, the same) friction as it would with more mass.

Answers

More I’m pretty sure but no promises

If a car is traveling at an average speed of 70 kilometers per hour how long does it take the car to travel 14 kilometers

Answers

Answer:

Explanation:

O.20 hour A

If a car is traveling at an average speed of 70 kilometers per hour, 0.2 hours it takes the car to travel 14 kilometers.

What is average speed?

By multiplying the distance that an item travels in one unit by the amount of time it takes to go that distance, one may determine the speed of the object. The speed of the item on this voyage, denoted by the letter "s," is equal to s = D/T if "D" is indeed the distance traveled in certain time "T."

Understanding average speed will help you better comprehend the pace of a travel. On a travel, the pace could occasionally change. Knowing the average speed then becomes crucial to getting an idea of how quickly the route will be finished.

Distance covered = average speed × Time travelled

14=70× Time travelled

Time travelled = 0.2 hours

Therefore, 0.2 hours it takes the car to travel 14 kilometers.

To know more about average speed, here:

https://brainly.com/question/10449029

#SPJ6

A microwave oven operates at 2.50 GHzGHz . What is the wavelength of the radiation produced by this appliance? Express the wavelength numerically in nanometers.

Answers

Answer:

The wavelength is [tex]\lambda  =  1.2  * 10^8 nm[/tex]

Explanation:

From the question we are told that

   The frequency of operation of the microwave is  [tex]f =  2.50 GHz  =  2.50 *10^{9} \ Hz[/tex]

     Generally the wavelength is mathematically represented as

          [tex]\lambda  =  \frac{c}{f}[/tex]

Here c is the speed of light with value [tex]c =  3.0 *10^{8} \  m/s[/tex]

So  

         [tex]\lambda  =  \frac{3.0 *10^{8}}{  2.50 *10^{9}}[/tex]

=>       [tex]\lambda  =  0.12 \  m [/tex]

converting to nanometer

           [tex]\lambda  =  1.2  * 10^8 nm[/tex]

The emf of the battery is 1.5 V. In Nichrome there are 9 × 1028 mobile electrons per m3, and the mobility of mobile electrons is 7 × 10−5 (m/s)/(N/C). Each thick wire has length 29 cm = 0.29 m and cross-sectional area 9 × 10−8 m2. The thin wire has length 6 cm = 0.06 m and cross-sectional area 1.3 × 10−8 m2. (The total length of the three wires is 64 cm.) In the steady state, calculate the number of electrons entering the thin wire every second. Do not make any approximations, and do not use Ohm's law or series-resistance equations.

Answers

Answer:

The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second

Explanation:

Given;

emf of the battery, V = 1.5 V

electron density, = 9 × 10²⁸ mobile electrons per m³

mobility of electron, u = 7 × 10⁻⁵ (m/s)/(N/C)

length of thin wire, L = 6 cm = 0.06 m

cross sectional area of the thin wire, A = 1.3 x 10⁻⁸ m²

The magnitude of the electric field in the thin wire is given by;

E = V/L

E = (1.5) / (0.06)

E = 25 N/C

the number of electrons entering the thin wire every second is given by;

[tex]e/s = mobility \ x \ Electric \ field\\\\number \ of \ electrons \ per \ second =\frac{7*10^{-5} (m/s)}{N/C} *25 (N/C)\\\\number \ of \ electrons \ per \ second = 1.75*10^{-3} \ m/s[/tex]

Therefore, the number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second

The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second

Calculation of the number of electrons:

Since

emf of the battery, V = 1.5 V

electron density, = 9 × 10²⁸ mobile electrons per m³

mobility of electron, u = 7 × 10⁻⁵ (m/s)/(N/C)

length of thin wire, L = 6 cm = 0.06 m

cross sectional area of the thin wire, A = 1.3 x 10⁻⁸ m²

So here the magnitude should be

E = V/L

E = (1.5) / (0.06)

E = 25 N/C

Now the number of electrons should be

= 7 × 10⁻⁵  *25

= 1.75 x 10⁻³ mobile

hence, The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second

Learn more about electron here: https://brainly.com/question/24701476

If it takes you 5 minutes to dry your hair using a 1200-W hairdryer plugged into a 120-V power outlet, how many Coulombs of charge pass through your hair dryer

Answers

Answer:

The charge pass through your hair dryer is 3000 C.

Explanation:

Given that,

Power = 1200 W

Voltage = 120 V

Flow time = 5 min

We need to calculate the current

Using formula of power

[tex]P=VI[/tex]

[tex]I=\dfrac{P}{V}[/tex]

Put the value into the formula

[tex]I=\dfrac{1200}{120}[/tex]

[tex]I=10\ A[/tex]

We need to calculate the charge pass through your hair dryer

Using formula of current

[tex]I=\dfrac{Q}{t}[/tex]

[tex]Q=It[/tex]

Put the value into the formula

[tex]Q=10\times5\times60[/tex]

[tex]Q=3000\ C[/tex]

Hence, The charge pass through your hair dryer is 3000 C.

A Navy Seal of mass 80 kg parachuted directly down into an enemy harbor. At one point while she was falling, the resistive force that air exerted on her was 520 N upward. What can you determine about her motion at this point in time

Answers

Answer:

The Navy Seal is accelerating downwards at the rate of 3.3 m/s²

Explanation:

Given;

mass of the Navy Seal, m = 80 kg

the upward resistive force on her, F = 520 N

Her net downward force is given by;

[tex]F_{net} = F_{down} - F_{up}\\\\F_{net} = (80*9.8) - 520\\\\F_{net} = 264 \ N[/tex]

Her downward acceleration at this time is given by;

F = ma

a = F / m

a = 264 / 80

a = 3.3 m/s²

Therefore, the Navy Seal is accelerating downwards at the rate of 3.3 m/s²

Explain why atoms only emit certain wavelengths of light when they are excited. Check all that apply. Check all that apply. Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. The energies of atoms are not quantized. When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. The energies of atoms are quantized.

Answers

Answer:

Explanation:

Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. FALSE. The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.

The energies of atoms are not quantized. FALSE. The energies of the atoms are in specific levels.

When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. FALSE. During absorption, a specific wavelength of light is absorbed, not emmited.

Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. TRUE. Again, you can observe just the transition due the change of energy of an electron in the quantized energy level

When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. TRUE. The electron decreases its energy releasing a specific wavelength of light.

The energies of atoms are quantized. TRUE. In fact, the energy of all subatomic, atomic, and molecular particles is quantized.

The reason why atoms emit only specific wavelengths is because the energy levels in atoms are quantized.

Max Plank introduced the idea of quantization of energy in the early 1900s. He introduced the idea that energy can only take on certain specific values. This idea was later extended to atoms by Neils Bohr.

The following statements explain why atoms only emit certain wavelengths of light when they are excited;

 When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. The energies of atoms are quantized.

Learn more: https://brainly.com/question/24381583

a jogger travels at 4 m/s for 100 s what is the distance covered

Answers

400m

Explanation:

given,

v= 4m/s

t= 100s

d= ?

since, v = d / t

therefore, d = v * t (velocity multiplied by time)

=> d = 4 * 100

= 400m.

A plane travelling at 100 m/s accelerates at 5 m/s² for a distance of 125 m. What is the final velocity of the plane?

Answers

Analyzing the question:                                                                                        

We are given:

initial velocity (u) = 100 m/s

final velocity (v) = v m/s

distance (s) = 125 m

acceleration (a) = 5 m/s²

Solving for Final Velocity (v):                                                                              

from the third equation of motion:

v² - u² = 2as

v² - (100)² = 2(5)(125)

v² - 10000 = 1250

v² = 1250 + 10000

v² = 11250

v = 106.06 m/s

the peripheral nervous system is responsible for both sending and receiving signals to and from the brain

Answers

Answer:

its true trust me

Explanation:

Answer: true

Explanation: edge

Based on the information in the table, which elements are most likely in the same periods of the periodic table?

Answers

Answer:

Just to help, periods on the periodic table are those running horizontally from left to right

Answer:

The answer is A.Boron and carbon are likely together in one period because they have very close atomic numbers, while gallium and germanium are likely together in another period because they have very close atomic numbers.

Explanation:

just took test

When a parachute opens, the air exerts a large drag force on it. This upward force is initially greater than the weight of the sky diver and, thus, slows him down. Suppose the weight of the sky diver is 915 N and the drag force has a magnitude of 1061 N. The mass of the sky diver is 93.4 kg. Take upward to be the positive direction. What is his acceleration, including sign

Answers

Explanation:

According to newton's second law of motion.

[tex]\sum Fx = ma\\\\\sum Fx = 1061 - 915\\\\\sum Fx = 146N[/tex]

m is the mas of the sky diver = 93.4kg

a is the acceleration of the skydiver

From the formula above;

[tex]a = \frac{\sum Fx}{m}\\ \\a = \frac{146}{93.4}\\\\a = 1.563m/s^2[/tex]

Hence the acceleration of the sky diver is 1.563m/s²

While making some observations at the top of the 66 m tall Astronomy tower, Ron
accidently knocks a 0.5 kg stone over the edge. How long will a student at the bottom
have to get out of the way before being hit?

Answers

Analysing the question:

Since the stone was dropped, there was no initial velocity applied on it and hence it's initial velocity of the stone is 0 m/s

We are given:

height of the tower (h) = 66 m

mass of the stone (m) = 0.5 kg

initial velocity of the stone (u) = 0 m/s

time taken by the stone to reach the ground (t) = t seconds

acceleration due to gravity = 10 m/s²

** Neglecting air resistance**

Finding the time taken by the stone to reach the ground:

from the second equation of motion

h = ut + 1/2at²

replacing the variables

66 = (0)(t) + 1/2 (10)(t)²

66 = 5t²

t² = 13.2

t = 3.6 seconds

I initially wanted to subtract the height of the student from the height of the tower since the time i calculated is the time taken by the stone to reach the ground and that means that the stone has already hit the student before 3.6 seconds

but since we were NOT given the height of a student, the person who posed this question wants the time taken by the stone to reach the ground and that is what we solved

For both resonance curves and Fourier spectra, amplitude is plotted vs frequency, but these two types of plots are not the same. Describe how they are different.

Answers

Answer:

he peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.

Explanation:

In a resonance experiment, the amplitude of the system is plotted as a function of the frequency, finding maximums for the values ​​where some natural frequency of the system coincides with the excitation frequency.

In a Fourier transform spectrum, the amplitude of the frequencies present is the signal, whereby each peak corresponds to a natural frequency of the system.

From this explanation we can see that in the first case the peaks are the natural frequencies that coincide with the excitation frequencies and in the second case they are the natural frequencies that make up the wave.

A lamp of mass m hangs from a spring scale which is attached to the ceiling of an elevator. When the elevator is stopped at the fortieth floor, the scale reads mg. What does it read as the elevator slows down to stop at the ground floor?

a. more than mg
b. mg
c. less than mg
d. zero
e. can't tell

Answers

Answer:

The correct answer is (a)

Explanation:

A spring scale measures the weight of an object not the mass because according to hooke's law the extension of a spring is directly proportional to the load or force attached/applied to it. The force of gravity acting on the mass of any substance as it goes up actually reduces and increases as it comes down.

If F = ma, as a increases, F will also increase and vice versa

Where F = force

m = mass

a = acceleration (due to gravity in this case)

From the above explanation, it can be deduced that the scale will read more than mg as it gets to the ground because of an increase in the force of gravity (which also increases a) as it approaches the ground.

. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.

Answers

Answer:

Explanation:

The total distance is how far you walk from the starting point.

Distance through west = 18.0m

Distance through north = 25.0m

Total distance covered = 18.0+25.0m

Total distance covered = 43.0m

This means that I am 43.0m from the starting point

Displacement is the distance covered in a specified direction. The displacement will be gotten using the Pythagoras theorem as shown:

[tex]d^2 = 25^2 + 18^2\\d^2 = 625+324\\d^2 = 949\\d = \sqrt{949}\\ d = 30.81m[/tex]

The direction of your displacement is 30.81m

Direction is gotten according to the formula;

[tex]\theta = tan ^{-1}{\frac{y}{x} }\\\theta = tan ^{-1}{\frac{25}{-18} }\\\theta = tan ^{-1}-1.3889}\\\theta = -60.27^0\\\theta = 180-60.27\\\theta = 119.7^0[/tex]

Note that the direction to the west is negative, that is why the x is -18.0m

The distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.

Given-

Distance travel through the west is 18 m.

Distance travel through the north is 25 m.

Distance from starting point-

To know the total distance, add both the covered distance. Thus total distance x is,

[tex]x=18+25[/tex]

[tex]x=43[/tex]

Hence, the distance from the starting point is 43 m.

The displacement vector-

Displacement is calculated as the shortest distance between starting and final point. This shortest distance can be calculated using the Pythagoras theorem which states that in a right-angled triangle, the square of the hypotenuse [tex]d[/tex] is equal to the sum of the squares of the other two sides. Therefore,

[tex]d^2=18^2+25^2[/tex]

[tex]d^2=324+625[/tex]

[tex]d^2=949[/tex]

[tex]d=\sqrt{949}[/tex]

[tex]d=30.81[/tex]

The displacement vector is 30.81 m.

The Direction of displacement-

The direction of displacement [tex]\theta[/tex] with these two sides can be calculated with the formula,

[tex]\theta=tan^{-1}\dfrac{25}{-18}[/tex]

Here due to the west direction(opposite side), the sign is taken negatively.

[tex]\theta=tan^{-1}(-1.389)[/tex]

[tex]\theta=-60.27^o[/tex]

For the other quarter,

[tex]\theta=180-60.27=119.7^o[/tex]

Hence, the distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.

For more about the displacement, follow the link below-

https://brainly.com/question/10919017

Other Questions
what is the basic of the cell membrane CORRECT ANSWER WILL GET BRAINLIEST!!!! HELP ASAPPPPP PLEASE 3. Two boxes need to be moved. Box A is 10 kg. Box B is 3 kg. Which box will 1 pointrequire more force to move?BOXABOX barbara made cookes for her sons football team.she made 3 cookes for each player there are 23 players how many cookes she make altogether Oils are fat in liquid form.A.TrueOB.False Many people try to eliminate fat from their diets. Which is one reason it isnecessary for humans to eat fat? -2(4x - 2) < - 8x + 4 what do i put? meh need help Solve the following system for all solutions: (x - 1)^2 + (y + 3)^2 = 13 x + y = -3 My teacher put nos and yess PLEASE HELP! WILL DO BRAINLIEST! What do scientists call all of the compounds that contain carbon and are found in living things?organicinorganicacidicnonacidic Is this True or false? All of the following are irrational except _____.597OR11 differentiate between digestion absorption and metabolism If the earth was a guava fruit, the space where the seeds are would be the core/mantle Governments create regulations in order to:A. prevent inflation and control the price of goods.B. build the infrastructure needed for a growing economy.C. make sure businesses do not harm citizens.D. reduce taxes on the country's successful businessesSUBMIT Why did the Germans want to establish ghettos near railroads? Y = 3x + 4 Y = 3x + 7 Misty must pack 365 candles into 15 boxes. Each box must contain an equal number of candles. How many candles does she have left over? (use long division to find the remainder)A) 1 B) 3C) 5 D) 7