an iron rod is 2.58m long at 0°c. calculate the length of a brass rod at 0°c if the difference between the length of the two rods must remain the same at all temperatures. ( linear expansivity of iron= 1.2 ×10^-5k^-1, linear expansivity of brass= 1.9 × 10^-5k^-1)​

Answers

Answer 1

Answer:

1.63 m

Explanation:

difference between the length of iron rod and brass rod must remain same, writing it in the equation form

[tex]l_{iron} - l_{brass} = C[/tex]

where C is a constant, differentiation both sides with respect to temperature([tex]\theta[/tex]),

[tex]\dfrac{dl_{iron}}{d\theta} - \dfrac{dl_{brass}}{d\theta} = 0[/tex]  ...  (1)

According to linear expansion equation,

[tex]\dfrac{dl}{d\theta} = \alpha l_0[/tex]

where [tex]l_0[/tex] is the length at 0 degree Celsius.

Now,

substituting values in equation 1 we get,

[tex]\alpha_{iron}. l_{iron} - \alpha_{brass} . l_{brass} = 0[/tex]

substituting the values of respective coefficient and length of iron at 0 degree Celsius we get,

[tex]l_{brass} = 1.63[/tex] m

Hopefully, this answer helped you solve the question!


Related Questions

1. Identify What is gravity? What determines the gravitational force between objects?​

Answers

Answer:

Gravity:

It is defined as the force that pulls a body towards the centre of the earth, or towards any other body having mass.

Existence:

We cannot see it with the eye, but that doesn't mean it doesn't exist. After all, we see the effects of gravity. It is the reason why things on Earth fall down while objects in space float around because there is no gravity in space

Determining:

When dealing with gravity between two objects, there are only two things that are important

1. Mass

2. Distance

The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them.

So we can write

Gravity is directly proportional to sum of masses of the body. More mass of object, more gravitational pull

And inversely proportional to square of distance between there centre. If the body is close to Earth's surface, more gravity and if away from the surface, less gravity

Hope you understand

I would appreciate if you mark my answer brainliest :)

Determining the distance to stars can be challenging. The parallax method is one way of finding the distance to many stars around us. Your research team measures the parallax of two stars that have a distance of 5 degrees from each other in the night sky: The first star has a parallax of 0.11 arcsec, and the second has a parallax of 0.13 arcsec. How far apart are the two stars from each other? Express your answer in light-years​

Answers

To determine the distance to the stars, we need to use the parallax formula:

distance = 1 / (parallax angle in arcseconds)

Let's use this formula to calculate the distances to the two stars:

distance to star 1 = 1 / 0.11 arcsec = 9.09 parsecs

distance to star 2 = 1 / 0.13 arcsec = 7.69 parsecs

Now, we need to determine the distance between the two stars. We can use trigonometry to do this. The angle between the two stars is 5 degrees, which is equivalent to 300 arcminutes or 18,000 arcseconds. Since we know the distance to each star, we can use the tangent function to calculate the distance between them:

tan(5 degrees/2) = (distance to star 1 - distance to star 2) / distance between stars

Simplifying this equation, we get:

distance between stars = (distance to star 1 - distance to star 2) / 2 / tan(5 degrees/2)

Plugging in the values we calculated earlier, we get:

distance between stars = (9.09 parsecs - 7.69 parsecs) / 2 / tan(5 degrees/2) = 5.57 parsecs

Finally, we convert this distance to light-years:

1 parsec = 3.26 light-years

So, the distance between the two stars is:

distance between stars = 5.57 parsecs * 3.26 light-years/parsec = 18.15 light-years

Therefore, the two stars are about 18.15 light-years apart from each other.

A uniform bar, of mass M, with seven evenly spaced holes is held by sliding the bar over a horizontal peg through one of the seven holes. The peg passes through hole C, and a cylinder hangs from a hook placed through hole B as shown above. The mass of the bar is equal to the mass of the cylinder, and the location of the center of mass of the bar is at the center of hole D. In this configuration, the bar-cylinder system remains motionless but is free to rotate around the peg in hole C. Frictional forces acting on the bar are negligible. In a clear, coherent paragraph-length response that may also contain equations, explain why the bar does not rotate in this configuration.

Please help!

Answers

The torques due to the weights of the bar and the cylinder are balanced, and the bar-cylinder system remains motionless and does not rotate around the peg in hole C.

What is COM?

The bar-cylinder system does not rotate around the peg in hole C because it is in equilibrium. The torque on the system due to the weight of the cylinder hanging from hole B is balanced by the torque on the system due to the weight of the bar and its distribution around the center of mass at hole D. The center of mass is located such that the torques due to the weights of the bar and the cylinder are equal and opposite, and hence the net torque on the system is zero.

Mathematically, we can express this equilibrium condition as:

T_cylinder = T_bar

The torque due to the weight of the cylinder is given by:

T_cylinder = r_CB * F_cylinder

Similarly, the torque due to the weight of the bar is given by:

T_bar = r_CD * F_bar

where r_CD is the distance between the peg at hole C and the center of mass at hole D, and F_bar is the weight of the bar.

Since the mass of the bar is equal to the mass of the cylinder, we have:

F_cylinder = F_bar = Mg

where M is the mass of the bar and cylinder, and g is the acceleration due to gravity.

Substituting the above equations into the equilibrium condition, we get:

r_CB * Mg = r_CD * Mg

which simplifies to:

r_CB = r_CD

To know more about torques visit:-

brainly.com/question/30338175

#SPJ1

A 0.250 kg toy car moving with a speed of .860 m/s collided with a wall. The figure shows the force exerted on the car by the wall over the course of the collision. What is the magnitude of the velocity, or final speed of the car in the collision?

Answers

Answer:

We can use the impulse-momentum theorem to solve this problem, which states that the change in momentum of an object is equal to the impulse applied to it. The impulse is given by the area under the force vs. time graph, which is shown in the figure.

First, we need to find the initial momentum of the car. Since the car is moving only in the x-direction, we can use the equation:

p_initial = m*v_initial

where p_initial is the initial momentum, m is the mass of the car, and v_initial is the initial velocity of the car. Plugging in the given values, we get:

p_initial = (0.250 kg)(0.860 m/s) = 0.215 kgm/s

Next, we need to find the change in momentum of the car, which is equal to the area under the force vs. time graph. We can approximate this area by dividing it into two triangles and a rectangle, as shown in the figure. The total area can be found as follows:

area = (1/2)(20 N)(0.002 s) + (20 N)(0.004 s) + (1/2)(10 N)(0.002 s)

= 0.06 Ns

Finally, we can use the impulse-momentum theorem to find the final momentum of the car, which is given by:

p_final = p_initial + impulse

where impulse is the area under the force vs. time graph. Plugging in the values, we get:

p_final = 0.215 kgm/s + 0.06 Ns = 0.275 kg*m/s

Since the mass of the car doesn't change during the collision, we can use the equation for momentum to find the final velocity of the car:

p_final = m*v_final

Solving for v_final, we get:

v_final = p_final / m = 0.275 kg*m/s / 0.250 kg = 1.1 m/s

Therefore, the magnitude of the velocity, or final speed of the car in the collision, is 1.1 m/s.

Explanation:

a few images below to understand.

A car traveling with an initial speed of 25 m/s decelerates at −5 m/s2 to a complete stop. What best approximates the distance the car travels during its deceleration?

Answers

The distance traveled by the car during its deceleration can be calculated using the following formula:

distance = (initial velocity)^2 / (2 * acceleration)

Plugging in the given values, we get:

distance = (25 m/s)^2 / (2 * 5 m/s^2)

distance = 312.5 meters

Therefore, the best approximation for the distance traveled by the car during its deceleration is 312.5 meters.

How do you find the spring constant with this data?

Answers

The spring constant with the given data on the period v. mass can be found to be  1. 86.

What is the spring constant ?

The spring constant, also known as the force constant or spring stiffness, is a measure of the stiffness of a spring. It is denoted by the letter k and is defined as the amount of force required to stretch or compress a spring by a certain distance (usually measured in meters or centimeters).

When given on a graph, the spring constant is the slope of the line in the graph. The slope of the given line would be the constant that multiplies the independent variable ( x ) which in this case is 1. 86 from the formula :

Period ( s ²) = 1. 86x + 0.0545

Find out more on the spring constant at https://brainly.com/question/9337485

#SPJ1

Which uses direct current?


A) A toaster oven thingy (look at pic)

B) A flashlight (look at pic)

C) A microwave (look at pic)

D) A vacuum (look at pic)

Answers

The correct answer is Option- B: A flashlight uses direct current (DC).

Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams.
Electric current flows in two ways as an alternating current (AC) or direct current (DC). The main difference between AC and DC lies in the direction in which the electrons flow. In DC, the electrons flow steadily in a single direction, while electrons keep switching directions, going forward and then backwards in AC.Thus,The correct answer is Option- B: flashlight.

For such more questions on direct current :

brainly.com/question/10715323

#SPJ11

How long will it take a runner to complete a marathon race of 42. 2 km if that runner can maintain an average speed of 4. 1 m/s?

Answers

 It would take the runner approximately 10,268.29 seconds (or about 2 hours, 51 minutes, and 8 seconds) to complete a marathon race of 42.2 km, maintaining an average speed of 4.1 m/s.

We can use the formula:

time = distance ÷ speed

to calculate the time it would take the runner to complete a marathon race of 42.2 km, given an average speed of 4.1 m/s.

First, we need to convert the distance to meters, as the speed is given in meters per second:

42.2 km = 42,200 m

Now, we can substitute the values into the formula:

time = distance ÷ speed

time = 42,200 m ÷ 4.1 m/s

time ≈ 10,268.29 s

Thus the time that the runner would take is  10,268.29 seconds  to complete a marathon race.

For such more questions on average speed :

brainly.com/question/6504879

#SPJ11

a 4.50 cm tall object is placed in front a convex mirror with a focal length of -(5.25 a) cm. if the magnification is 1/(2 b), what is the distance from the object to the mirror? give your answer in centimeters (cm) and with 3 significant figures

Answers

The distance between the object and the mirror is 13.96 cm, given to 3 significant figures.

The given data are as follows:Object height, h1= 4.50 cmFocal length of the convex mirror, f = −(5.25a) Magnification, m = 1/(2b)We are supposed to find the distance between the object and the mirror, u using the mirror formula. We can use the formula,1/f = 1/u + 1/vSince the mirror is convex, the focal length f is negative.

Therefore, substituting the values in the formula, we get,1/(-5.25a) = 1/u + 1/v⇒ −0.1905 = 1/u + 1/v…… (1)The magnification of an object is given by,m = −v/u where, m is the magnification, u is the distance of the object from the mirror and v is the distance of the image from the mirror. Substituting the values of m and solving for v, we get,v = m×u= (1/(2b))×u…… (2)

We are now supposed to solve the above equations to find the value of u. To do that, we have to substitute equation (2) into (1). On substituting, we get,−0.1905 = 1/u + 1/[(1/(2b))×u]Simplifying the above equation and cross multiplying, we get,(1/(2b))u − 0.1905u = −1On further simplification and solving for u, we get,u = 13.96 cm…… (3).

Learn more about convex mirror here:

https://brainly.com/question/3627454

#SPJ11

which of the following energy sources is not derived directly or indirectly from solar energy? responses biomass biomass geothermal geothermal hydroelectric hydroelectric wind

Answers

The energy source that is not derived directly or indirectly from solar energy is geothermal energy.

Geothermal energy is a type of energy that is generated from heat in the Earth's crust. This heat comes from the Earth's molten core, which is heated by nuclear reactions. Geothermal energy is generated in hot springs, geysers, and volcanoes, and is used to produce electricity by harnessing the energy of hot water and steam.Biomass energy is a renewable energy source that is derived from organic matter, such as wood, crops, and waste materials. Biomass is burned to produce energy, and is often used to power homes and businesses. Hydroelectric energy is generated by harnessing the power of water, which is usually done by building dams and using the energy of falling water to turn turbines. Wind energy is generated by harnessing the power of the wind, which is done by using wind turbines to capture the energy of the wind and turn it into electricity. All of these energy sources are derived directly or indirectly from solar energy, since the sun is responsible for heating the Earth's atmosphere and creating weather patterns that generate wind and precipitation.

Know more about geothermal energy

https://brainly.com/question/29108059

#SPJ11

Hypothesis of experiment of a focal length of a concave lens?
Variables?

Answers

The right choice is C)  [tex]\frac{1}{v} +\frac{1}{u} =\frac{1}{f}[/tex] which is the equation that relates u and v

[tex]\frac{1}{u} = \frac{1}{f} - \frac{1}{v}[/tex]

The slant of this curve can be found by differentiation  [tex]-\frac{1}{u^2} du = 0 + \frac{dv}{v^2} \\[/tex]

⇒ [tex]\frac{dv}{du} = - \frac{v^2}{u^2}[/tex]

[tex]\frac{dv}{du}[/tex]  is the slant which is negative so either curve (c) or curve (a) is correct. Presently the incline relies on the worth of u and v for example it continues to change at each point according to the equation above. So figure (c) is the response.

A convex spherical mirror likewise has a focal point. Occurrence beams lined up with the optical pivot are reflected from the mirror and appear to begin from point F at focal length f behind the mirror. Subsequently, the focal point is virtual in light of the fact that no genuine beams really go through it; they just seem to start from it.

to know more about focal point click here:

https://brainly.com/question/30761313

#SPJ4

the complete question is:

In an experiment to find the focal length of a concave mirror, a graph is drawn between the magnitudes of u and v. The graph looks like this:

refer to the attachment for the graph

A charge of 6.5 x 10-5 C is attracted by another charge with a force of 250 N when
they are separated by 0.15 m. Find the magnitude of the other charge.
8.65 X 105 C
9.62 × 10-2 C
6.15 x 10-6 C
O 9.62 x 10 c

Answers

Answer:

We can use Coulomb's law to solve this problem:

F = k * q1 * q2 / r^2

where F is the force between the two charges, k is Coulomb's constant (k = 9 x 10^9 N m^2 / C^2), q1 and q2 are the magnitudes of the charges, and r is the distance between them.

We know the force F, the distance r, and the magnitude of one of the charges q1. We can rearrange the equation to solve for the magnitude of the other charge q2:

q2 = F * r^2 / (k * q1)

Substituting the values we have:

q2 = (250 N) * (0.15 m)^2 / (9 x 10^9 N m^2 / C^2 * 6.5 x 10^-5 C)

Simplifying:

q2 = 8.65 x 10^5 C

Therefore, the magnitude of the other charge is 8.65 x 10^5 C.

Faults, folding ridges, mountains, valleys and volcanic arc are formed when the plates move because ????

Answers

Plate tectonics can result in the formation of faults, folding ridges, mountains, valleys, and volcanic arcs, among other geological features.

Plate tectonics is the scientific theory that explains how the Earth's lithosphere (its solid outermost layer) is broken up into several large plates that move relative to each other over the underlying asthenosphere (its partially molten layer). When plates move, they can interact with one another in a variety of ways, including colliding, spreading apart, and sliding past one another. Depending on the type of interaction and the characteristics of the plates involved, these interactions can produce a wide range of geological features.When plates move apart, magma from the earth's mantle can arise to fill the gap, forming new crust and forming mid-ocean ridges like the Mid-Atlantic Ridge. This is referred to as seafloor spreading.

learn more about tectonic plates here:

https://brainly.com/question/19317822

#SPJ4

Find the work done by a force F = 4i − 3j + 2k that moves an object from the point (3, 2, -1) to the point (2, -1, 4) along a straight line. The distance is measured in meters and the force in newtons.

Answers

Answer:

15 N

Explanation:

work done by the force in vector form is given by the equation,

[tex]W = \vec{F}.\delta \vec{r}[/tex]

where . represents the dot product.

in the given question,

[tex]F = 4i - 3j + 2k[/tex]

and

[tex]\delta \vec{r} = (2 - 3)i + (-1 - 2)j + (4 - (-1))k[/tex]

[tex]\delta \vec{r} = -i - 3j + 5k[/tex]

on doing the dot product we get

[tex]W = -4 + 9 + 10\\W = 15[/tex]

Hopefully this answer helped you.

Describe three ways you can lower the intensity of sound from a speaker, at a rock concert. Refer to the equations learnt in lesson for two of them.

Answers

Reduce the volume: Reducing the volume is one of the simplest ways to lessen the sound intensity coming a speaker. As you move farther away from the source of the sound, the intensity of the sound also diminishes.

What level of volume is there at a rock concert?

Nonetheless, regardless of the location, a rock concert can be quite loud. Decibel levels during rock concerts often range from 90 to 120 dB. This decibel level is alarming since it could endanger your ability to hear.

What causes a sound's strength to lessen?

The intensity of the sound is proportional to the square of the distance from the source of the sound wave. The strength of a sound wave depends on whether it travels through a two-dimensional or three-dimensional medium to carry its energy.

To know more about sound intensity visit:-

https://brainly.com/question/30101270

#SPJ1

The light from the furthest galexy every seen (galaxy hd1) has traveled for 13. 463 billions light years to reach us. How far is this in meters?

Answers

The light from Galaxy HD1 is believed to have traversed 1.273 10 26 metres.

To convert the distance traveled by the light from Galaxy HD1 from light-years to meters, we can use the following conversion factor:

1 light-year = 9.461×10^15 meters

Therefore, the distance traveled by the light from Galaxy HD1 is:

13.463 billion light-years × 9.461×10^15 meters/light-year = 1.273×10^26 meters

So, the distance traveled by the light from Galaxy HD1 is approximately 1.273×10^26 meters, which is an incredibly large distance. It is important to note that this distance represents the comoving distance, which takes into account the expansion of the universe over time.

To learn more about light years refer to:

brainly.com/question/10321474

#SPJ4

What is the term used to describe the maximum distance that a sound wave displaces air molecules from their original undisturbed position?

Answers

The term used to describe the maximum distance that a sound wave displaces air molecules from their original undisturbed position is called the amplitude

The term used to describe the maximum distance that a sound wave displaces air molecules from their original undisturbed position is called the amplitude of the sound wave. Amplitude refers to the magnitude of the wave's displacement and is typically measured in decibels (dB).

The higher the amplitude of a sound wave, the louder the sound will be perceived by our ears. The amplitude of a sound wave is determined by the amount of energy that the sound wave carries. A sound wave with a higher amplitude will have more energy and thus will displace air molecules more strongly than a sound wave with a lower amplitude.

Learn more about amplitude here

brainly.com/question/1686242

#SPJ4

Hhhhhhhhhhhhhhhhhhhhjj

Answers

Answer:

grrr I don't know either grrr

Calculate the potential energy, kinetic energy, mechanical energy, velocity, and height of the 45 kg object at various locations as shown on the diagram below.

Answers

The potential energy at each point:

PE₁ = 1764 J

PE₂ = 1323 J

PE₃ = 0 J

PE₄ = 441 Jh

The kinetic energy at each point:

KE at point 1 = 0KE at point 2 = 1764 - 1323 JKE at point 2 = 441 JKE at point 3 = 1764 JKE₄ = 1219.7 J

To find the mechanical energy at each point:

ME₁ = 1764 JME₂ = 1764 JME₃ = 1764 JME₄ = 1764 J

The height at point 4, h = 1.23 m

What are the potential energy, kinetic energy, and mechanical energy of the object at each point?

To calculate the potential energy, kinetic energy, and mechanical energy of the object at each point, we will need to use the following formulas:

Potential energy (PE) = mgh, where m is the mass of the object, g is the acceleration due to gravity (9.8 m/s^2), and h is the height above a reference point.

Kinetic energy (KE) = 0.5mv^2, where m is the mass of the object and v is its velocity.

Mechanical energy (ME) = PE + KE

Given:

Mass of the object (m) = 45 kg

Point 1: h = 4 m

Point 2: h = 3 m

Point 3: h = 0 m

Point 4: v = 5.2 m/s

To find the potential energy at each point:

PE₁ = mgh1 = 45 kg x 9.8 m/s^2 x 4 m

PE₁ = 1764 J

PE₂ = mgh2 = 45 kg x 9.8 m/s^2 x 3 m

PE₂ = 1323 J

PE₃ = mgh3 = 45 kg x 9.8 m/s^2 x 0 m

PE₃ = 0 J

PE₄ = mgh4 = 45 kg x 9.8 m/s^2 x h

PE₄ = 441 Jh

KE at point 1 = 0

KE at point 2 = 1764 - 1323 J

KE at point 2 = 441 J

KE at point 3 = 1764 J

To find the kinetic energy at point 4:

KE₄ = 0.5mv^2 = 0.5 x 45 kg x (5.2 m/s)^2

KE₄ = 1219.7 J

To find the mechanical energy at each point:

ME₁ = PE₁ + KE

ME₁ = 1764 J + 0 J = 1764 J

Since the mechanical energy is conserved (ignoring friction and air resistance), we can set ME₁ = ME₂ = ME₃ = ME₄

Solving for h:

ME₁ = ME₄

1764 J = 441 Jh + 1219.7 J

h = (1764 J - 1219.7 J) / (441 J)

h = 1.23 m

Therefore, at point 4, the object has a velocity of 5.2 m/s and a height of 1.23 m.

Learn more about mechanical energy at: https://brainly.com/question/30692822

#SPJ1

Find the altitude of Earth’s geostationary orbit.
The mass of the Earth is 5.97 x 1024 kg.
The radius of Earth is 6.38 x 106 m.

Answers

Altitude of Earth's geostationary orbit is approximately 35,786 km above the surface of the Earth.

What is Geostationary?

Geostationary refers to an object in orbit around the Earth that appears to remain fixed in the same position above the Earth's surface. Specifically, a geostationary orbit is an orbit in which a satellite orbits the Earth at the same rate that the Earth rotates, so that the satellite appears to remain stationary relative to a fixed point on the Earth's surface.

The altitude of Earth's geostationary orbit can be found using the formula:

h = R(3/2) * √(M/m)

where:

h is the altitude of the geostationary orbit

R is the radius of the Earth

M is the mass of the Earth

m is the mass of the satellite

For a geostationary orbit, the satellite has a period of 24 hours, which means it orbits the Earth once every 24 hours. This requires the satellite to be at an altitude where its orbital period matches the Earth's rotational period, and this altitude is known as the geostationary orbit.

For a geostationary satellite, the mass of the satellite is negligible compared to the mass of the Earth, so we can assume that m is much smaller than M.

Plugging in the given values, we get:

h = (6.38 x 10^6 m) * (3/2) * √(5.97 x 10^24 kg / m)

h = 35,786 km

Learn more about Geostationary from given link

https://brainly.com/question/19862046

#SPJ1

Ronaldo or Messi? Who is better?

Answers

Answer:

In my opinion, Ronaldo

Explanation:

Ronaldo, who holds the record for most Champions League goals of all time, leads Messi by one on that trophy count. Messi, meanwhile, has a greater number of domestic cups and league titles.

What do you think?

Answer:

In my opinion, it's Christiano Ronaldo. But why is Ronaldo better than Messi?

Explanation:

Ronaldo is a more complete player.

His ability to jump and head balls was flawless. Ronaldo is such a complete player, emphasising his complete nature, that he is dangerous in every minute of the game. This is demonstrated by him being the first player in football history to score in every minute of a 90-minute game.

1. Rohan always prefer to go by bicycle instead of using his car to go nearby places .

(a) why do you think he prefers to go by a cycle ?

(b) is Rohan act environment friendly ? What can you learn from him ?

Answers

Answer:

(b) Yes, Rohan's act of using a bicycle instead of a car is environmentally friendly, as it reduces carbon emissions and promotes sustainable transportation. From him, we can learn the importance of making conscious choices that have a positive impact on the environment and our health. We can also learn that small actions, such as choosing to cycle instead of drive, can make a significant difference in reducing our carbon footprint and promoting a more sustainable future.

What term best describes the regular path of a spacecraft or other object around a planetary body?

a. Cycle

b. Orbit

c. Rotation

d. Spin

Answers

Answer:

Explanation:

b. orbit

To test the performance of its tires, a car travels along a perfectly flat (no banking) circular track of radius 179 m. The car increases its speed at uniform rate of





until the tires start to skid.

If the tires start to skid when the car reaches a speed of 29. 7 m/s, what is the coefficient of static friction between the tires and the road?

The acceleration of gravity is 9. 8 m/s^2

Answers

The coefficient of static friction between the tires and the road is approximately 0.252

The maximum speed that a car can travel without skidding is determined by the maximum force of static friction that the tires can exert on the road. The formula for this maximum force of static friction is:

f_s = m × g × μ_s

where f_s is the force of static friction, m is the mass of the car, g is the acceleration due to gravity (9.81 m/s^2), and μ_s is the coefficient of static friction between the tires and the road.

When the car reaches a speed of 20 m/s, it is moving in a circular path of radius 139 m. The centripetal force required to keep the car moving in this circular path is given by:

f_c = m × v^2 / r

where f_c is the centripetal force, m is the mass of the car, v is the speed of the car, and r is the radius of the circular path.

At the point where the tires start to skid, the maximum force of static friction is equal to the centripetal force required to keep the car moving in the circular path:

f_s = f_c

Substituting the formulas for f_s and f_c and solving for μ_s, we get:

m × g × μ_s = m × v^2 / r

μ_s = v^2 / (g × r)

We are given that the car increases its speed at a uniform rate of 5.26 m/s^2. We can use the formula for uniform acceleration to find the time it takes for the car to reach a speed of 20 m/s:

v = u + a × t

20 = 0 + 5.26 × t

t = 20 / 5.26 = 3.8 s

Using this time, we can find the distance traveled by the car before the tires start to skid:

s = u × t + 1/2 × a × t^2

s = 0 + 1/2 × 5.26 × (3.8)^2

s = 36.6 m

Now we can substitute the given values into the formula for μ_s:

μ_s = v^2 / (g × r)

μ_s = (20)^2 / (9.81 × 139)

μ_s = 0.252

Learn more about static friction here

brainly.com/question/30394536

#SPJ4

an investigator is measuring the current in a photoelectric effect experiment. the cathode is illuminated by light of a single wavelength. what happens to the current if the wavelength of the light is reduced by a factor of two while keeping the intensity constant?

Answers

When the wavelength of light is reduced by a factor of two while keeping the intensity constant, the current in a photoelectric effect experiment decreases by a factor of two. In this case, the kinetic energy of photoelectrons ejected from the cathode would also decrease by a factor of two.

What is the photoelectric effect? The photoelectric effect is the phenomenon of the emission of electrons from a metal surface upon the absorption of light. The photoelectric effect is important in the field of physics as it provides evidence that light behaves as both a wave and a particle.

The energy of the ejected electrons depends on the frequency of the incident light and the work function of the metal, which is a measure of how tightly the electrons are held by the metal. If the frequency of the light is above the threshold frequency of the metal, photoelectrons will be emitted.

What happens when the wavelength of light is reduced by a factor of two? We know that the kinetic energy of the photoelectrons is given by K = hf - φ, where

h is Planck's constant,

f is the frequency of the light,

and φ is the work function of the metal.

In this formula, we can see that the kinetic energy of the photoelectrons is directly proportional to the frequency of the light. When the frequency of the light is reduced by a factor of two, the kinetic energy of the photoelectrons is also reduced by a factor of two.

Since the current is directly proportional to the number of photoelectrons emitted per second, which is proportional to the kinetic energy of the photoelectrons, the current will also decrease by a factor of two.

Therefore, when the wavelength of the light is reduced by a factor of two while keeping the intensity constant, the current in a photoelectric effect experiment decreases by a factor of two.

To know about wavelength, refer here:

https://brainly.com/question/13676179#

#SPJ11

A man has a mass of 60. 1 kilograms. He jumps from the ground onto a 177 meter building and then dives off of it and comes to a rest at the bottom of a 18. 5 meter excavation. By how much will gravitational energy change in joules?

Answers

The change in gravitational potential energy is approximately 93,640 joules.

The change in gravitational potential energy can be calculated using the formula, ΔPE = mgΔh, where ΔPE is the change in gravitational potential energy, m is the mass of the man, g is the acceleration due to gravity, and Δh is the change in height.

The change in height, Δh = 177 m + (-18.5 m) = 158.5 m.

The mass of the man is given as 60.1 kilograms, and the acceleration due to gravity is approximately 9.81 meters per second squared. The change in gravitational potential energy.

ΔPE = (60.1 kg)(9.81 m/s^2)(158.5 m) ≈ 93,640 J

To know more about energy, here

brainly.com/question/19768887

#SPJ4

Calculate the wavelength for a sound wave with a frequency of 485 Hz. That has a sound wave in air has a frequency of 420 Hz

Answers

The wavelength for a sound wave with a frequency of 485 Hz. That has a sound wave in the air has a frequency of 420 Hz is 70.7cm and 81.7cm.

Wavelength = speed of sound/frequency

The speed of sound is approximately 343 meters per second.

For a sound wave with a frequency of 485 Hz, the wavelength would be:

wavelength = 343 m/s / 485 Hz = 0.707 m or 70.7 cm

For a sound wave in air with a frequency of 420 Hz, the wavelength would be:

wavelength = 343 m/s / 420 Hz = 0.817 m or 81.7 cm.

Wavelength is a fundamental concept in physics that refers to the distance between two consecutive points on a wave that is in phase, meaning that they are at the same point in their respective cycles. It is usually denoted by the Greek letter lambda (λ).

Wavelength is an important property of all types of waves, including electromagnetic waves (such as light), sound waves, and even waves in water. In general, the wavelength of a wave is inversely proportional to its frequency, which is the number of cycles that occur per unit of time. This means that waves with a higher frequency have a shorter wavelength, while waves with a lower frequency have a longer wavelength.

To learn more about Wavelength visit here:

brainly.com/question/12924624

#SPJ4

 Two trumpet players are riding in separate convertibles which are moving in opposite directions at a speed of 30 m/s. They both strike a note with a frequency of 1024 Hz Calculate:

(A). The pitch heard coming from one vehicle by a listener of the other vehicle.

(B). The pitch heard coming from either vehicle by an observer stationed directly between both vehicles.

(C). The pitch heard by a listener in either vehicle if both vehicles turn around and move toward each other at the same speeds.

Answers

A.) Is the right answer

A charge of 6. 00mc is placed at each corner of a square 0. 100m on a side. Determine the magnitude and direction of the force on each charge. (hint: only solve for one charge, you should notice that the magnitude is the same for all charges. )

Answers

3.24 x [tex]10^{-2}[/tex] N is the force acting on each charge.

We can use Coulomb's law to determine the magnitude and direction of the force on each charge. Coulomb's law states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them.

Let's assume that we are calculating the force on one of the charges located at a corner of the square. The distance between two adjacent charges is 0.1m, and the charge on each corner is 6.00mc, which is 6.00 x [tex]10^{-6}[/tex] C.

Using Coulomb's law, we can calculate the magnitude of the force on one charge as:

F = kq₁q₂/r²

where k is the Coulomb constant (9 x [tex]10^{9}[/tex] N m²/C²), q₁and q₂ are the charges, and r is the distance between the charges.

If we plug in the values, we get:

F = (9 x [tex]10^{9}[/tex] N m²/C²) * (6.00 x[tex]10^{-6}[/tex] C)² / (0.1m)²

F = 3.24 x [tex]10^{-2}[/tex] N

So the magnitude of the force on each charge is 3.24 x [tex]10^{-2}[/tex] N, and the direction of the force is towards the other charges located at the corners of the square. Since the charges are all the same, the direction of the force will be towards the center of the square.

To learn more about force refer to:

brainly.com/question/13191643

#SPJ4

Very far from earth (at R=infinity), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force of the earth were to act on it (i. E. , neglect the forces from the sun and other solar system objects), the spacecraft would eventually crash into the earth. The mass of the earth is Me and its radius is Re. Neglect air resistance throughout this problem, since the spacecraft is primarily moving through the near vacuum of space.

a. Find the speed Se of the spacecraft when it crashes into the earth.

Express the speed in terms of Me, Re, and the universal gravitational constant G.

b. Now find the spacecraft’s speed when its distance from the center of the earth is R=αRe, where α >=1. Express the speed in terms of Se and α.

Answers

a. The speed Se of the spacecraft when it crashes into the earth is approximately 11.2 km/s.

b. The spacecraft's speed when its distance from the center of the earth is R = αRe is Se / √(α).

a. To find the speed Se of the spacecraft when it crashes into the earth, we can use the law of conservation of energy. At R = infinity, the spacecraft has zero kinetic energy and potential energy, so its total mechanical energy is zero. As it falls towards the earth, the potential energy decreases while the kinetic energy increases. At the moment of impact, all of the potential energy has been converted to kinetic energy.

Using the law of conservation of energy, we have:

[tex]0 = 1/2 mv^2 - GM_em/r[/tex]

where m is the mass of the spacecraft, v is its speed at impact, G is the universal gravitational constant, and r is the distance from the center of the earth to the spacecraft at impact.

We can rearrange this equation to solve for v:

[tex]v = \sqrt{(2GM_e/r)}[/tex]

Substituting the values for G, M_e, and r, we get:

[tex]v = \sqrt{(2 \times 6.6743 \times 10^{-11} m^3/kg s^2 \times 5.97 \times 10^{24} kg / 6.38 \times 10^6 m)}[/tex]

[tex]v = 11.2 km/s[/tex]

Therefore, the speed Se of the spacecraft when it crashes into the earth is approximately 11.2 km/s.

b. To find the spacecraft's speed when its distance from the center of the earth is R = αRe, we can use conservation of energy again. The spacecraft still has zero kinetic energy and potential energy at R = infinity, so we can use the same equation as before:

[tex]0 = 1/2 mv^2 - GM_em/r[/tex]

But now r = αRe, so we can solve for v in terms of Se and α:

v = √(2GM_e/αRe)

Substituting the value of [tex]GM_e[/tex] from before and simplifying, we get:

v = Se / √(α)

Therefore, the spacecraft's speed when its distance from the center of the earth is R = αRe is Se / √(α).

for such more question on kinetic energy

https://brainly.com/question/25959744

#SPJ4

Other Questions
for a research project in an introductory sociology course, a student decides to compare how women's magazines cover health and beauty topics versus career and professional topics. this student is conducting PLEASE HELP I NEED HELP ASAP The atmosphere consists mainly of nitrogen and oxygen, small amounts of carbon dioxide, and trace amounts of hydrogen. Does the atmosphere consist of polar or nonpolar compounds? can someone please help me on this one? cubic cm Brett has pieces of steel that are 8 in. and 12 inch. Long he wants to weld the pieces together with a third piece of steel to make. Triangular frame what is the range of the lengths he can use for the third piece Read the excerpt from act 1, scene 1, of The Tragedyof Julius Caesar and the background information onthe allusion it contains.Excerpt:[FLAVIUS.] See whether their basest mettle be notmoved.They vanish tongue-tied in their guiltiness.Go you down that way towards the Capitol;This way will I. Disrobe the imagesIf you do find them decked with ceremonies.MARULLUS. May we do so?You know it is the feast of Lupercal.FLAVIUS. It is no matter, let no imagesBe hung with Caesar's trophies. I'll about,And drive away the vulgar from the streets:So do you too, where you perceive them thick.This excerpt revolves around acultural allusion.historical allusion.Oliterary allusion.Oreligious allusion. help please i dont get it DNA is located in thenucleusorganellesmembraneribosomesof a cell. Which one ?? Consider the stories Popular Mechanics and What we talk about when we talk about love by Raymond Carver. What are the views expressed about love, life and relationship in these narratives? Oliver notices a flower growing in his front flowerbed. It is one he has never seen before, and he knows he didnt plant this flower. Flowering plants have developed ways to disperse seeds in different ways for a reason. Describe two ways seeds are dispersed, and explain why it is important for them to be spread in different places Government investments in education and health often provide:Multiple Choicemore physical capital.lower interest rates.decreases in technology.positive externalities. I bought a new car to transport my kids and all their stuff. The value of the car y (in thousands of dollars) can be represented by the model y=41(0. 92)^t , where t is the number of years since I purchased the car. Which value in the equation represents the decay factor? Need help Mav has $560 to spend at a bicycle store for some new gear and biking outfits. Assume all prices listed include tax.She buys a new bicycle for $425.05.She buys 4 bicycle reflectors for $15.19 each and a pair of bike gloves for $15.79.She plans to spend some or all of the money she has left to buy new biking outfits for $29.20 each.Write and solve an inequality which can be used to determine o, the number of outfits Mav can purchase while staying within her budget. write an equation for the acceleration of the two connected blocks in terms of m1, m2, and the acceleration due to gravity g. you created an index of the three stocks that have share prices of $150, $350, and $1,000 and market capitalizations of $400 million, $350 million, and $150 million, respectively.what is the index value of a price=weighted index using the three stocks? (A)if the stock with a price of $1,000 is replaced by a stock with price of $750, what is the new index denominator? (b) What is bathroom? ?? A certain baseball pitcher gives up a base hit (on average) once every 15 pitches. in a particular game he threw 120 pitches. find the probability he gave up at MOST 2 base hits. The reading on the thermometer is -10 degrees celsius and the temperature drops with 10 degrees celsius what will the new reading be Digital PhotographyIn this section, you will be learning more about lighting setups in portrait photography and their visual effects. Photographers choose different lighting setups for various reasons. Lighting helps the photographer create a certain mood for the image. Lighting also helps create the visual story a photographer is telling about the person.Make a personal connection to the photo. In three to five sentences, write a short essay that explains what type of lighting setup was used and what this image makes you think about. Use specific details in describing what the photo reminds you of personally.Study the image. BookheadEd Learning, LLC1. In paragraph 5, Strayed says that "in the years 4. In paragraph 12, highlight passages that showbefore I pitched my boot over the edge of themountain, I'd been pitching myself over theedge too." Highlight a phrase from paragraph 5that clarifies what she means. Then analyze theway(s) in which including this line helps Strayedachieve her overall purpose.