calculate the ph during the titration of 20.00 ml of 0.1000 m hcooh(aq) with 0.1000 m naoh(aq) after 19.55 ml of the base have been added. ka of formic acid

Answers

Answer 1

1.8 is the pH during the titration of 20.00 mL of 0.1000 M HCOOH (formic acid) with 0.1000 M NaOH (aq) after 19.55 mL of the base have been added

This can be calculated using the equation below:

pH = -log10([H+])

Where [H+] is the concentration of H+ ions, given by the formula:

[H+] = Ka * [HCOOH] / (Ka + [NaOH])

Ka is the acid dissociation constant of formic acid, which is 1.7 × 10-4.

Using the above equation and data, we can calculate the pH during the titration of 20.00 mL of 0.1000 M HCOOH with 0.1000 M NaOH after 19.55 mL of the base have been added as follows:

[H+] = 1.7 x 10-4 * 0.1000 / (1.7 x 10-4 + 0.1000) = 0.0156 M

Therefore, pH = -log10 (0.0156) = 1.8

Hence , the pH during given titration is 1.8 .

To know more about Titration please visit :

https://brainly.com/question/13307013

#SPJ11


Related Questions

A chemist is preparing to carry out a reaction at high pressure that requires 36.0 moles of hydrogen gas. The chemist pumps the hydrogen into a 12.4 L rigid steel container at 25.0oC. To what pressure, in atm, must the hydrogen be compressed? a. What gas law applies to this scenario? b. Solve for the unknown variable (include the units in your answer).

Answers

The gas law that applies is the ideal gas law. The hydrogen gas must be compressed to a pressure of 98.9 atm.

Ideal Gas law

The gas law that applies to this scenario is the Ideal Gas Law, which states:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature in Kelvin.

Rearranging the Ideal Gas Law to solve for pressure (P), we get:

P = nRT/V

Substituting the given values, we get:

P = (36.0 mol)(0.0821 L•atm/K•mol)(25.0 + 273 K) / 12.4 L

P = 98.9 atm

Therefore, the hydrogen gas must be compressed to a pressure of 98.9 atm.

More on gas laws can be found here: https://brainly.com/question/12669509

#SPJ1

Many alloys, such as brass (made from zinc and copper) is a solid
…………..in which the atoms of two or more metals are uniformly mixed.
*solution
*suspension
*colloid
*pure substance

Answers

Answer:

solution

Explanation:

Alloy is solid solution as it is a mixture of two or more metals or a metal and a non-metal.

How many Magnesium atoms in the formula 3Mg(O3H2)3

HELPP M PLEASE

Answers

The formula 3Mg(O3H2)3 represents a molecule composed of 3 magnesium atoms and 9 groups of hydroxide ions (O3H2), each containing 3 oxygen atoms and 6 hydrogen atoms.

What is a Molecule?

A molecule is a colle-ction of two or more than two atoms that are held toge-ther by chemical-bonds. These atoms could be of the same or different elements. For example, H2O (water) is a molecule made up of two (2) hydrogen-atoms and one oxygen atom.

Another example is carbon dioxide (CO2), which is a molecule consisting of one carbon atom and two oxygen atoms. Molecules are the fundamental building blocks of many substances, and their unique arrangement and properties play a critical role in various chemical reactions and biological processes.

To learn more about molecule, visit: https://brainly.com/question/475709

#SPJ1

list the processes that release carbon into the atmosphere

Answers

Answer:

Fossil fuels, such as coal, oil, or natural gas, release carbon back into the atmosphere.

The processes would be decomposition, diffusion, erosion, respiration, and combustion.

Explanation:

Hope this helped?

Litium nitride reacts with water to form ammonia and lithium hydroxide, according to the following balanced chemical equation:

Li3N (s) + 3 H2O (l) → NH3 (g) + 3 LiOH (aq)

If 4. 87 g of lithium reacts with 5. 80 g of water, how much ammonia is produced before the reaction stops?

Answers

1.82 g of ammonia are created before the reaction comes to an end. By computing the moles of each reactant and comparing their ratios using the balanced chemical equation, we may do this.

We determine the lithium's moles:

1 mol Li divided by 6.941 g Li to get 4.87 g Li equals 0.700 mol Li

The moles of water are then determined:

1 mol H2O divided by 18.015 g H2O in 5.80 g gives 0.322 mol H2O.

As there are fewer molecules of water (0.322 mol) than there are molecules of lithium (0.700 mol), water is the limiting reactant.

We may determine the number of moles of ammonia created by using the mole ratio from the balanced chemical equation:

1 mol NH3 / 3 mol H2O 0.322 mol H2O = 0.107 mol NH3

Finally, we may convert moles to grammes using the molar mass of NH3:

1.82 g NH3 from 0.107 mol NH3 (17.031 g NH3 / 1 mol NH3)

As a result, 1.82 g of ammonia are created before the reaction comes to an end.

Learn more about "balanced chemical equation." here:

https://brainly.com/question/23024590

#SPJ4

Acetylene is formed as a by-product in the manufacture of ethylene. It is removed by selective hydrogenation using noble metal catalysts (see, for example, us 7,453,017). A particular catalyst achieves 90% acetylene saturation with 50% hydrogen selectivity for acetylene at a weight hourly space velocity of 800 h1 based on ethylene. Design a reactor to remove 1% acetylene from ethylene in a plant that produces 1. 5 million metric tons per year of ethylene using this catalyst

Answers

The reactor needs to process 2,488,076 m³/hour of ethylene to remove 0.8219 metric tons/day of acetylene. The reactor design will depend on the specifics of the plant, such as the available space, pressure and temperature requirements, and the desired efficiency of the process.

To remove 1% acetylene from 1.5 million metric tons per year of ethylene, we need to calculate the flow rate of ethylene and acetylene. Let's assume that the ethylene stream contains 2% acetylene, so we need to remove 1% of 2%, which is 0.02%.

1.5 million metric tons per year of ethylene is equivalent to 4,109.59 metric tons per day. To calculate the flow rate of acetylene, we multiply the flow rate of ethylene by the concentration of acetylene:

Acetylene flow rate = 4,109.59 metric tons/day x 0.02% = 0.8219 metric tons/day

Now we can use the given information about the catalyst to design a reactor. The weight hourly space velocity (WHSV) is defined as the weight of reactants per hour per weight of catalyst. We can use the following equation to calculate the required weight of catalyst:

WHSV = (Weight of reactants per hour) / (Weight of catalyst)

Weight of catalyst = (Weight of reactants per hour) / WHSV

Since we know the WHSV and the acetylene flow rate, we can calculate the required weight of ethylene per hour:

Weight of ethylene per hour = (Weight of acetylene per hour) / (0.9 × 0.5 × WHSV)

Weight of ethylene per hour  [tex]=\frac{(0.8219)}{(0.9*0.5*800*24)} = 1,368.94[/tex] metric tons/hour

Assuming a density of 0.55 kg/L for ethylene, the volumetric flow rate of ethylene is:

Volumetric flow rate of ethylene = Weight of ethylene per hour / (Density of ethylene x 1000 L/m³)

Volumetric flow rate of ethylene [tex]= \frac{(1,368.94)}{(0.55 * 1000)} = 2,488,076[/tex] m³/hour

This indicates that in order to remove 0.8219 metric tons of acetylene per day, the reactor must process 2,488,076 m³/hour of ethylene each hour. The reactor design will be determined by the characteristics of the facility, including the amount of space available, the necessary pressure and temperature, and the desired process efficiency. Based on these variables, the catalyst weight and reactor size will need to be determined.

To know more about Volumetric flow rate

brainly.com/question/12910339

#SPJ4

the complete question is:

Acetylene is formed as a by-product in the manufacture of ethylene. It is removed by selective hydrogenation using noble metal catalysts (see for example US 7453 017). A particular catalyst achieves 90% acetylene saturation with 50% hydrogen selectivity for acetylene at a weight hourly space velocity of 800 h-1 based on ethylene Design a reactor to remove 1% acetylene from ethylene in a plant that produces 15 million metric tons per year of ethylene using this catalyst.

the ph of a 0.50 m solution of formic acid is 2.02. calculate the change in ph when 1.25 g of hcoona is added to 27 ml of 0.50 m formic acid, hcooh. ignore any changes in volume. the ka value for hcooh is 1.8 x 10-4.

Answers

The addition of 1.25 g of sodium formate increases the pH of the solution by 2.12 units.

To calculate the change in pH, we need to determine the new concentrations of the formic acid and its conjugate base after the addition of the sodium formate. We can then use the Henderson-Hasselbalch equation to calculate the new pH.

First, let's calculate the initial concentration of formic acid:

0.50 M = moles of formic acid / 0.027 L

moles of formic acid = 0.50 x 0.027 = 0.0135 mol

Now, we need to calculate the concentration of formate ion (HCOO-) after adding 1.25 g of sodium formate (HCOONa) to the solution. Since sodium formate dissociates completely in water, the number of moles of formate ion added will be the same as the number of moles of sodium formate:

moles of HCOO- = moles of NaHCOO = 1.25 g / (68.01 g/mol) = 0.0184 mol

Next, we can calculate the new concentrations of formic acid and formate ion:

[ HCOOH ] = (0.0135 mol) / (0.027 L) = 0.5 M

[ HCOO- ] = (0.0135 mol + 0.0184 mol) / (0.027 L) = 1.15 M

Now, we can use the Henderson-Hasselbalch equation to calculate the new pH:

pH = pKa + log([ HCOO- ] / [ HCOOH ])

pKa = -log(Ka) = -log(1.8 x 10^-4) = 3.74

pH = 3.74 + log(1.15 / 0.5) = 3.74 + 0.40 = 4.14

Therefore, the change in pH is:

ΔpH = 4.14 - 2.02 = 2.12

So, the addition of 1.25 g of sodium formate increases the pH of the solution by 2.12 units.

Learn more about pH on:

https://brainly.com/question/172153

#SPJ11

Calculate the mass of dinitrogen tetroxide that contains a million oxygen atoms

Answers

The mass of the Dinitrogen tetroxide that contains a million oxygen atoms is 23 x 10⁶ .

Atoms and molecules are very small in both size and mass. One sample mole's weight is the molar mass. To get the molar mass, connect the atomic masses (atomic weights) of each atom in the molecule. Using the mass listed in the Periodic Table or Atomic Weight Table, determine the atomic mass for each element.

To calculate the molecular mass of a molecule, multiply the subscript (number of atoms) by the atomic mass of each element in the molecule and add those masses together. Typically, molar mass is stated in either grammes (g) or kilogrammes (kg) (kg).

From the molecular formula of dinitrogen tetroxide ;

molar mass of dinitrogen tetroxide = 92 g/mol

hence;

92 g of dinitrogen tetroxide contains 4 atoms of oxygen

x g of dinitrogen tetroxide will contain 1 x 10⁶ atoms of oxygen

x = 92 x 1 x 10⁶/4

x =23 x 10⁶ atoms of oxygen.  

Learn more about Mass:

https://brainly.com/question/28395798

#SPJ4

Complete question:

Calculate the mass of dinitrogen tetroxide (N₂O₄) that contains a million (1.000 x 10₆) oxygen atoms. Be sure your answer has a unit symbol if necessary, and round it to 4 significant digits.

the oxygen that is released during the light reactions comes from what? group of answer choices ndph h2o atp h

Answers

The oxygen that is released during the light reactions comes from water.

Let's know more about photosynthesis:

1. Photosynthesis is the process by which the plant can produce food. The process of photosynthesis converts light energy into chemical energy, which organisms can use. In this process, water and carbon dioxide produce oxygen and glucose. This process is carried out in the chloroplasts of plants.

2. Light Reaction: During the process of photosynthesis, two types of reactions take place, light reaction, and dark reaction. The light reaction takes place in the thylakoid membrane of the chloroplast. It needs light to occur. Here, the light energy is absorbed by pigments such as chlorophyll. This light energy is converted into chemical energy. ATP and NADPH are the two products of the light reaction.

3. Oxygen is also released during the light reaction. The oxygen that is released during the light reactions comes from water. This reaction also helps in the formation of the electron transport chain.

#SPJ11

Know more about light reactions: What is a light reaction?​ https://brainly.com/question/23940213

8) If you have 3 moles of HNO3, how many grams of oxygen are present?

Answers

Each formula unit of HNO3 contains 3 oxygen atoms. The ratio of oxygen atoms to formula units is 3/1.

then 3.0 moles of HNO3 X 3/1 = 9 moles of oxygen atoms.

A mole is 6.02 X 10^23 units, so the answer is 9 X 6.02 X 10^ 23

or about 5.4 X 10^ 24

Determine whether the combination of each pair of solutions can or cannot be tested in the precipitation interactive. Can be tested in the interactive Cannot be tested in the interactive Answer Bank Kl and K,SO K,SO, and K, CO, K. CO, and Ni(NO) Ni(NO,), and Ba(NO3)2 Pb(NO3), and K,s Ba(NO3)2 and K, CO,

Answers

[tex]Pb(NO_{3})_{2} ,And K_{2} S, Ba(NO_{3})_{2} and K_{2}CO_{3} ,K_{2}CO_{3} and Ni(NO_{3})_{2}[/tex]can be tested in the interactive, these can form precipitate (ppt), so it can be tested in interactive.

[tex]K_{2} SO_{4} and K_{2} CO_{3} , KI and K_{2} SO_{4}, NI(NO_{3} )_{2} and BO(NO_{3} )_{2}[/tex] cannot be tested in the interactive. There is no formation of precipitate (ppt), therefore it cannot be tested in interactive. When certain cations and anions interact in an aqueous solution, precipitates are insoluble ionic solid products of the process. The variables that affect how a precipitate forms can be different. Certain reactions, like those involving buffer solutions, are temperature-dependent, whereas others just depend on the concentration of the solution.The following is an illustration of a precipitation reaction: One of the products is solid, and both reactants are watery. The reactants dissociate and are soluble since they are ionic and watery.

Learn more about precipitate here:

https://brainly.com/question/1783904

#SPJ4

What is the claim in a literary analysis?

a reason that makes your opinion believable

an emotional statement of opinion

a reasonable, debatable opinion about the work

a summary of the factual evidence

Answers

An argumentative, plausible view of the literary work being evaluated is the claim in a literary analysis.

The claim in a literary analysis, which is an interpretation of a literary work, is the author's argument or viewpoint regarding the relevance or meaning of the work.

The assertion needs to be clear, debatable and backed up by textual evidence.

Literary analysis

The claim in literary analysis is the main viewpoint or argument that the author is advancing regarding the relevance or meaning of the literary work under consideration.

The assertion should be a reasonable, disputed opinion that can be backed up by textual evidence, and it should be sufficiently detailed to be convincing and understandable to the reader.

For instance, in an interpretation of William Shakespeare's play "Hamlet," a writer can contend that, rather than a lack of courage, Hamlet's hesitation to exact revenge on his father's murderer stems from his desire for justice and his battle with indecision.

This assertion is both plausible and problematic because different readers or critics may interpret Hamlet's actions differently.

learn more about the literary analysis here

https://brainly.com/question/9965425

#SPJ1

The volume of gas at 320mmHg and 22⁰c is 220cm³. What volume would the gas occupy at s.t.p ?

Answers

Answer: 85.73 cm^3

Explanation:

Combined Gas law (temperature must be in Kelvin)

V2= P1V1 T2/(T1 x P2)

P1 = 320 mmHg

V1= 220 cm^3

T1= 295.15 K

T2= 273.15 K

P2 = 760 mmHg

320 x 220 X 273.15/(295.15 X 760) = 85.72697201 cm^3

The determination in problem 15-9 was modified to use the standard addition method. In this case, a 4. 236 g tablet was dissolved in sufficient 0. 10M HCl to give 1. 00 L. Dilution of 20. 00 mL aliquot to 100 mL yielded a solution that gave reading of 448 at 347. 5 nm. A second 20. 00 mL aliquot was mixed with 10 mL of 50 ppm quinine solution before dilution to 100 mL. The fluorescence intensity of this solution was 525. Calculate the percentage of quinine in the tablet

Answers

The percentage of the quinine in the tablet is 3.43 %. This is calculated using the mass and concentration of quinine.

The volume of the solution in which the tablet is dissolved is 1.000 L

The fluorescence intensity of the first sample is 448

The fluorescence intensity of the second sample is 525

The fluorescence intensity indicates how much light or photon is emitted. It is defined as the extent of emission and it depends on the concentration of the excited fluorophore. It is created by the absorption of energy by fluorescent molecules called fluorophores.

The concentration of the standard solution is 50 ppm.

The volume of the standard solution is 10.0 ml.

The volume of the aliquot is 20.00 ml.

The mass of the tablet is 4.236 g.

From all these value we get the concentration of  the aliquot is. 145.45 ppm.

The mass in milligram of quinine in the tablet is 145 mg.

The mass in milligram of quinine in the tablet is calculated as shown below

The mass in milligram of quinine in the tablet is 0.145 g.

The percentage of quinine in the tablet is calculated as shown below,

 = 0.145 g quinine / 4.236 g tablet * 100%

 = 3.43%

To learn more about Quinine

https://brainly.com/question/2617979

#SPJ4

The complete question is,

The determination in Problem 15-9 was modified to use the standard-addition method. In this case, a 4.236-g tablet was dissolved in sufficient 0.10 M HCl to give 1.000 L. Dilution of a 20.00-mL aliquot to 100 mL yielded a solution that gave a reading of 448 at 347.5 nm. A second 20.00-mL aliquot was mixed with 10.0 mL of 50-ppm quinine solution before dilution to 100 ml. The fluorescence in tensity of this solution was 525. Calculate the percentage of quinine in the tablet.

Problem:

Quinine in a 1.664-g antimalarial tablet was dissolved in sufficient 0.10 M HCL to give 500 mL of solution. A 20.00-mL aliquot was then diluted to 100.0 mL with the acid. The fluorescence intensity for the diluted sample at 347.5 nm provided a reading of 245 on an arbitrary scale. A standard 100-ppm quinine solution registered 125 when measured under conditions identical to those for the diluted sample. Calculate the mass in milligrams of quinine in the tablet.

A sample containing 37. 4 grams of ammonia undergoes combustion with excess oxygen in a bomb (constant volume) calorimeter to form nitrogen monoxide (nitric oxide) and water gas. The heat constant for the calorimeter is 952 J/oC. The specific heat capacity for water vapor is 2. 00 J/ g. OC. The specific heat capacity for nitrogen monoxide is 0. 996 J/ g. OC. During the experiment, the temperature in the calorimeter changes from 22. 9oC to 1772. 9oC.


A. Give the balanced chemical equation that represents this reaction and calculate the number of grams for each product produced.

B. Calculate the amount of heat transferred during this reaction. Be certain to include units and the correct number of significant figures. Ignore the effects of excess oxygen in the bomb calorimeter.

C. Calculate the change in enthalpy in kJ/mol ammonia for this reaction.

D. Is the change in enthalpy equal to the change in internal energy for this reaction? Explain your answer.

E. How would the change in enthalpy for this reaction differ, if the reaction was allowed to occur in an open reaction vessel? Explain

Answers

There is a production of 59.14 grammes of water vapour and 65.85 grammes of nitrogen monoxide.

A. The balanced chemical equation for the combustion of ammonia with excess oxygen to form nitrogen monoxide and water gas is:

4 NH₃ (g) + 5 O₂ (g) → 4 NO (g) + 6 H₂O (g)

According to the equation, for every 4 moles of ammonia, 4 moles of nitrogen monoxide and 6 moles of water gas are produced. To calculate the number of grams of each product produced, we need to find the number of moles of ammonia in the sample:

Molar mass of NH₃ = 14.01 g/mol + 3(1.01 g/mol) = 17.04 g/mol

Number of moles of NH₃ = 37.4 g / 17.04 g/mol = 2.19 mol

Using the mole ratio from the balanced equation, we can calculate the number of moles of each product:

Number of moles of NO = 4/4 x 2.19 mol = 2.19 mol

Number of moles of H₂O = 6/4 x 2.19 mol = 3.28 mol

To find the mass of each product, we can use their molar masses:

Molar mass of NO = 30.01 g/mol

Molar mass of H₂O = 18.02 g/mol

Mass of NO produced = 2.19 mol x 30.01 g/mol = 65.85 g

Mass of H₂O produced = 3.28 mol x 18.02 g/mol = 59.14 g

Therefore, 65.85 grams of nitrogen monoxide and 59.14 grams of water gas are produced.

B. The amount of heat transferred during this reaction can be calculated using the formula:

q = CΔT

where q is the amount of heat transferred, C is the heat capacity of the calorimeter, and ΔT is the change in temperature of the calorimeter.

From the problem, we are given:

C = 952 J/°C

ΔT = 1750°C - 22.9°C = 1727.1°C

Substituting the values, we get:

q = (952 J/°C) x (1727.1°C) = 1.64 x [tex]10^{6}[/tex] J

Therefore, the amount of heat transferred during this reaction is 1.64 x [tex]10^{6}[/tex] J.

C. The change in enthalpy for the reaction can be calculated using the equation:

ΔH = q/n

where q is the amount of heat transferred, and n is the number of moles of ammonia that reacted.

From part A, we know that 2.19 moles of ammonia reacted. Substituting the values, we get:

ΔH = (1.64 x [tex]10^{6}[/tex] J) / 2.19 mol = 748,858 J/mol = 748.9 kJ/mol

Therefore, the change in enthalpy for the reaction is 748.9 kJ/mol ammonia.

D. The change in enthalpy is not equal to the change in internal energy for this reaction because the bomb calorimeter is a constant volume calorimeter, which means that no work is done during the reaction (Δw = 0). Therefore, the change in enthalpy (ΔH) equals the change in internal energy (ΔU) plus the work done (Δw) by the system:

ΔH = ΔU + Δw

Since Δw = 0 for the bomb calorimeter, ΔH = ΔU.

To learn more about  balanced chemical equation refer to:

brainly.com/question/28294176

#SPJ4

Macmillan Learning
Step 2: Show the conversions required to solve this problem and calculate the grams of Br₂.
70.6 g AlBr, x
grams of Br₂:
26.98 g Al
159.80 g Br₂
266.68 g AlBr,
Answer Bank
I mole Al
1 mole Br₂
1 mole AlBr,
2 moles Al
3 moles Br₂
2 moles AlBr,
= g Br₂
g Br₂

Answers

Answer:

To solve the problem, we need to convert the given quantity of AlBr to grams of Br₂ using the given molar ratios:

70.6 g AlBr * (1 mole AlBr / 266.68 g AlBr) * (3 moles Br₂ / 2 moles AlBr) * (159.80 g Br₂ / 1 mole Br₂) = 94.3 g Br₂

Therefore, 94.3 g of Br₂ are required.

I have a Chemistry test, please i cant solve it

Answers

Exercise 1. To balance the number of electrons, we multiply the oxidation half-reaction by 5 and the reduction half-reaction by 1:

5Fe₂+ → 5Fe₃⁺ + 5e⁻

MnO₄⁻ + 8H⁺ + 5e⁻ → Mn₂⁺ + 4H₂O

We can combine the two half-reactions and cancel out the electrons. Finally, we balance the equation by adding water molecules and hydrogen ions (H+) as needed to balance the oxygen and hydrogen atoms:

The balanced equation is:

MnO₄⁻ + 8H⁺ +5Fe₂ → Mn₂⁺ + 4H₂O + 5Fe₃⁺

To balance the number of electrons, we multiply the oxidation half-reaction by 6 and the reduction half-reaction by 1:

6H₂S → 6S + 12H⁺ + 12e⁻

Cr₂O₇²⁻ + 14H⁺ +  6e⁻ → 2Cr₃⁺ + 7H₂O

We can combine the two half-reactions and cancel out the electrons.

Finally, we balance the equation by adding water molecules and hydrogen ions (H+) as needed to balance the oxygen and hydrogen atoms:

The balanced equation is:

Cr₂O₇²⁻ + 14H⁺ + 6H₂S → 2Cr₃⁺ + 7H₂O + 6S

Exercise2.

What happens at anode?

1. The anode is where oxidation occurs, and the cathode is where reduction occurs. In this case, Al is a stronger reducing agent than Cu, so Al will undergo oxidation and Cu will undergo reduction. Therefore, the anode is the Al electrode, and the cathode is the Cu electrode.

2. Electrons flow from the anode to the cathode in a galvanic cell.

3. The symbolic representation of the galvanic cell is:

Al(s) | Al₃⁺(aq) || Cu₂⁺(aq) | Cu(s)

4. The two half equations and the balanced equation are:

Oxidation half-reaction (anode): Al(s) → Al₃⁺(aq) + 3e-

Reduction half-reaction (cathode): Cu₂⁺(aq) + 2e- → Cu(s)

Overall balanced equation: 2Al(s) + 3Cu₂⁺(aq) → 3Cu(s) + 2Al₃⁺(aq)

5. The salt bridge is used to maintain charge neutrality in the two half-cells by allowing the flow of ions between them. As the electrons flow from the anode to the cathode, positively charged Al₃⁺ ions build up in the anode compartment, and negatively charged SO₄²⁻ ions build up in the cathode compartment. The salt bridge allows the movement of SO₄²⁻ ions from the cathode compartment to the anode compartment to balance the charges.

6.The EMF of the cell can be calculated using the formula:

EMF = E0(cathode) - E0(anode) = 0.34V - (-1.67V) = 2.01V

7.  Q = It = (1 A)(3600 s) = 3600 C

The number of moles of electrons transferred can be calculated from the stoichiometry of the balanced equation:

2Al(s) + 3Cu₂⁺(aq) → 3Cu(s) + 2Al₃⁺ (aq)

2 moles of Al will react for every 3 moles of Cu2+ reduced.

From the mass change of the cathode, we can calculate the number of moles of Cu reduced using its molar mass:

molar mass of Cu = 63.55 g/mol

change in mass of Cu = 0.192 g

moles of Cu reduced = (0.192 g)/(63.55 g/mol) = 0.0030 mol

Therefore, the number of moles of Al oxidized is:

moles of Al oxidized = (2/3)(0.0030 mol) = 0.0020 mol

Finally, the change in mass of the anode can be calculated using the molar mass of Al:

molar mass of Al = 26.98 g/mol

change in mass of Al = (0.0020 mol)(26.98 g/mol) = 0.054 g

Therefore, the variation in the anode's mass is 54 mg (rounded to the nearest mg).

To know more about reducing agent, visit:

https://brainly.com/question/2890416

#SPJ1

For nitrous acid, HNO2, K, = 4. 0 x 10^-4. Calculate the pH of 0. 68 M HNO​

Answers

The 0.68 M HNO₂ solution has a pH of 1.96. This demonstrates how acidic the solution is.

The equation for the dissociation of nitrous acid is as follows:

HNO₂ (aq) ⇌ H+ (aq) + NO₂- (aq)

The equilibrium constant expression for this reaction is:

K = [H+][NO₂-]/[HNO₂]

We are given the value of K and the initial concentration of HNO₂. We can assume that x is the concentration of H+ and NO₂- produced when the HNO₂ dissociates.

Using the equilibrium constant expression and the given values, we can write:

4.0 x [tex]10^{-4}[/tex] = x² / (0.68 - x)

Because x is small compared to 0.68, we can approximate (0.68 - x) as 0.68:

4.0 x [tex]10^{-4}[/tex] = x² / 0.68

Solving for x gives us:

x = √(4.0 x [tex]10^{-4}[/tex] x 0.68) = 0.011 M

The pH of the solution can be calculated using the formula:

pH = -log[H+]

Therefore, the pH of the 0.68 M HNO2 solution is:

pH = -log(0.011) = 1.96

Therefore, the pH of the 0.68 M HNO2 solution is 1.96. This indicates that the solution is acidic.

To learn more about pH refer to:

brainly.com/question/15289741

#SPJ4

A 2. 37 l balloon contains 0. 115 mil of xenon gas,Xe (g) at a pressure of 954 Torr

Answers

The temperature of the xenon gas in the balloon is approximately 276 K.

We can use the Ideal Gas Law to solve for the moles of xenon gas present in the balloon:

PV = nRT

where P is pressure, V is volume, n is number of moles, R is gas constant, and T will be the temperature in Kelvin.

Converting the given values to the correct units:

P = 954 Torr = 954/760 atm

= 1.2553 atm

V = 2.37 L

n = 0.115 mol (given)

R = 0.08206 L·atm/mol·K (gas constant)

T = ? (unknown)

Substituting the values and solving for T:

T = PV/nR = (1.2553 atm)(2.37 L)/(0.115 mol)(0.08206 L·atm/mol·K)

≈ 276 K

To know more about Ideal Gas Law here

https://brainly.com/question/4147359

#SPJ4

1. If your [F-] molarity in an acid solution is 1 x 10-3, what's the pH?

Answers

The pH of an acidic solution depends on the concentration of hydrogen ions (H+) in the solution.

However, in this case, we are given the concentration of fluoride ions (F-) in the solution, which is not directly related to the pH.

Assuming that the acid in the solution is hydrofluoric acid (HF), we can write the following equilibrium expression:

[tex]HF + H2O H3O+ + F-[/tex]

where HF is the weak acid, H2O is water, H3O+ is the hydronium ion, and F- is the fluoride ion.

The equilibrium constant expression for this reaction is:

[tex]Ka = [H3O+][F-]/[HF][/tex]

At equilibrium, the concentration of HF will be equal to the initial concentration minus the concentration of F-, since one F- ion reacts with one H+ ion to form HF:

[HF] = [HF]initial - [F-]

Assuming that the initial concentration of HF is also 1 x 10^-3 M (since the problem does not give this information), we can substitute these values into the equilibrium expression and solve for the concentration of H3O+:

[tex]Ka = [H3O+][F-]/([HF]initial - [F-])1.8 x 10^-4 = [H3O+][1 x 0^-3]/(1 x 10^-3 - 1 x 10^-3)1.8 x 10^-4 = [H3O+][1 x 10^-3]/0[/tex]

Since the denominator is zero, this equation is undefined and cannot be solved. Therefore, we cannot determine the pH of the solution based on the given information.

learn more about molarity  at:

https://brainly.com/question/8732513

#SPJ4

What color are the new bonds that form between the solute and solvent?

Answers

The color of the new bonds that form between a solute and solvent depends on the specific solute and solvent involved, as well as the nature of the bonding between them, and it may or may not result in a visible color change.

The color of the new bonds that form between the solute and solvent depends on the specific solute and solvent involved, as well as the nature of the bonding between them. In general, the formation of new bonds between a solute and solvent may not necessarily result in a visible color change.

However, there are some cases where the formation of new bonds can result in a change in color. For example, in the case of transition metal complexes, the formation of new coordination bonds between a transition metal ion and a ligand can result in a change in color due to the absorption of light by the metal-ligand complex.

This is known as a ligand-to-metal charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT) transition, and the resulting color change can be used to identify and quantify the complex.

To know more about solvent here

https://brainly.com/question/14797683

#SPJ4

At each station, work with a partner to use claim, evidence, and reasoning to determine what the fossil type is at that station. Write your responses on the following lines.
Station 1

Station 2

Station 3

Station 4

Station 5

At each station, work with a partner to use claim, evidence, and reasoning to determine what the fossil type is at that station. Write your responses on the following lines.
Station 1

Station 2

Station 3

Station 4

Station 5

Choose the station you are most confident about and write your CER for it below. Make sure you separate and label your claim, evidence, and reasoning.

Answers

A brachiopod is the type of fossil found at Station 1. Trilobites are the type of fossil found at Station 2. A gastropod is the type of fossil found at Station 3. A crinoid is the type of fossil found at Station 4. Ammonites are the type of fossil found at Station 5.

Is a brachiopod a fossil index?

As index fossils, brachiopods are used to specify and categorise geologic periods. They are also used to study ecological changes, such as those that occurred 500 million years ago during the Great Ordovician Biodiversification Event.

What two varieties of brachiopods are there?

They have two valves or shells, which are frequently made of the mineral calcite (calcium carbonate). The lophophore, which is a coiled feeding apparatus in brachiopods, is shielded by the valves on it.

To know more about fossil visit:-

https://brainly.com/question/30503344

#SPJ1

The negative effect of people's personal views about infectious diseases

Answers

people's personal views about infectious diseases can have serious negative consequences for public health, including a decreased likelihood of following public health guidelines, the spread of misinformation etc.

People's personal views about infectious diseases can have a negative effect on public health in several ways:

Ignoring public health guidelines: Some individuals may not take infectious diseases seriously or may believe that they are not at risk, which can lead them to ignore public health guidelines such as wearing masks, practicing physical distancing, or getting vaccinated.

Spreading misinformation: Individuals with personal views about infectious diseases that are not based on scientific evidence may spread misinformation to others, causing confusion and fear.

Stigmatization: People's personal views about infectious diseases may also lead to the stigmatization of certain groups or communities, such as those who have contracted the disease or those who are perceived to be at higher risk.

Inadequate treatment: Personal views about infectious diseases may also affect individuals' decisions about seeking medical care or complying with treatment regimens.

learn more about infectious diseases here:

https://brainly.com/question/29767710

#SPJ4

If 100. 0 g of Cl2 are needed, what mass of NaOCl must be reacted? NaOCl + HCl → NaOH + Cl2​

Answers

105.00g mass of NaOCl to react with HCl and produce 100.0 g of Cl₂.

The balanced chemical equation for the reaction between NaOCl and HCl is:

NaOCl + HCl → NaOH + Cl₂  

From the equation, we can see that 1 mole of NaOCl reacts with 1 mole of Cl₂. Therefore, we need to determine the number of moles of Cl₂ that are required, and then use the stoichiometry of the balanced equation to calculate the corresponding number of moles of NaOCl required.

The molar mass of Cl₂ is 2 x 35.45 g/mol

= 70.90 g/mol.

We can use this molar mass to calculate the number of moles of Cl₂ required:

100.0 g / 70.90 g/mol

= 1.41 mol

Therefore, 1.41 mol of NaOCl is required to react with 1.41 mol of HCl to produce 1.41 mol of Cl₂. The molar mass of NaOCl is 74.44 g/mol, so we can calculate the mass of NaOCl required as:

1.41 mol x 74.44 g/mol

= 105.00 g

To know more about mass here

https://brainly.com/question/13682401

#SPJ4

the chemical reaction that generated tall of the heat in the stove was caused by the combustion of methane (CH4). this reaction raleases 808kj of energy per mole of methane. if you turned your stove on for 5 minutes an used up 38.0 (27g) of methane, how much energy did you release?

Answers

The amount of energy released would be 1917.96 kJ.

Energy released by combustion

We can start by calculating the number of moles of methane used up in the reaction:

Number of moles = mass / molar mass

molar mass of CH4 = 12.01 + 4(1.01) = 16.05 g/mol

Number of moles = 38.0 g / 16.05 g/mol = 2.37 mol (rounded to two decimal places)

Next, we can calculate the total energy released by the combustion of this amount of methane:

Energy released = energy released per mole x number of moles

Energy released = 808 kJ/mol x 2.37 mol = 1917.96 kJ (rounded to two decimal places)

Therefore, if you used up 38.0 g (or 2.37 mol) of methane in 5 minutes, you would have released approximately 1917.96 kJ of energy.

More on heat of combustion can be found here: https://brainly.com/question/14317568

#SPJ1

calculate the mass fraction of CH3COOH in 3 litres of its 2M solution if the density of the solution is 0.981g/ml​

Answers

The mass fraction is 0.122  for the sample that has been solved here for the solution of the CH3COOH in 3 liters of its 2M.

What is the mass fraction?

The term "mass fraction" refers to the proportion of a component's mass of the substance that we have in the system and it is common that we expresses this value as a percentage accordingly.

Mass of the solution = DV

Mass = 0.981 * 3000 mL

= 2943 g

We know that;

Number of moles = CV

Moles = 2M * 3 L

= 6 moles

Mass = Number moles * molar mass

= 6 * 60 g/mol

= 360 g

Mass fraction = 360 g/2943 g

= 0.122

Learn more about mass fraction:https://brainly.com/question/29572900

#SPJ1

5. What mass of sodium nitrate would be produced from the complete reaction of 1. 00 mol of lead

nitrate?

2 NaCl + Pb(NO3)2 → 2 NaNO3 + PbCl2

Answers

So, after calculating, we will get 168.98 grams of mass in no 3. So this is our final answer.

A given mass of oxygen is 0.15dm³ at 60°c and 1.01 × 105 nm-² .find its pressure at the same temperature if it's volume is charged to 0.39 dm³​

Answers

The pressure of the oxygen at 60°C and a volume of 0.39 dm³ is 3.5 × 104 nm-².

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas:

(P1 x V1) / T1 = (P2 x V2) / T2

where P1, V1, and T1 are the initial pressure, volume, and temperature of the gas, and P2, V2, and T2 are the final/absolute pressure, volume, and temperature.

We are given the following:

Initial pressure P1 = 1.01 × 105 nm-² (nanometers squared)

Initial volume V1 = 0.15 dm³

Initial temperature T1 = 60°C = 333 K

Final volume V2 = 0.39 dm³

Final temperature T2 = 60°C = 333 K

We need to find the final pressure P2.

Plugging these values into the combined gas law, we get:

(P1 x V1) / T1 = (P2 x V2) / T2

(1.01 × 105 nm-² x 0.15 dm³) / 333 K = (P2 x 0.39 dm³) / 333 K

Simplifying this equation, we get the following:

P2 = (1.01 × 105 nm-² x 0.15 dm³ x 333 K) / (0.39 dm³ x 333 K)

P2 = 3.5 × 104 nm-²

Therefore, the pressure of the oxygen at 60°C and a volume of 0.39 dm³ is 3.5 × 104 nm-².

Learn more questions about pressure:

https://brainly.com/question/28012687

Zn + 2HCl = ZnCl2 + H2 what mass of zinc reacts when 8. 45 moles of HCl react to produce zinc chloride

Answers

the amount of zinc needed to react with 8.45 moles of hydrochloric acid is 4.225 moles.

To solve this problem, we will use the given balanced equation and the molar ratio of reactants and products:

Zn + 2HCl → ZnCl2 + H2

Molar ratio: 1:2 (zinc to hydrochloric acid)

Therefore, the amount of zinc needed to react with 8.45 moles of hydrochloric acid is 4.225 moles.

Since the molar mass of zinc is 65.38 g/mol, the mass of zinc needed to react with 8.45 moles of hydrochloric acid is 4.225 moles x 65.38 g/mol = 276.21 g of zinc.

For more question on Molar ratio click on

https://brainly.com/question/30851942

#SPJ11

Help please
7. The blood on the right side in Model 1 only contains 50% oxygen, but it has 95% total gases.
a. What gas other than oxygen do you think might be dissolved in the blood on the right side of the heart?
b. What process produced this gas?
c. What happens to this gas before the blood enters the left side of the heart?
8. Looking at the arrows on Model 1, how would you describe the flow pattern of the blood inside the circulatory system?
9. What features might the entrances and exits to the heart need in order to maintain this flow pattern?

The Circulatory System 3
Extension Questions
10. A “hole in the heart” is actually an opening in the wall dividing the left and right sides of the heart. This wall is called the septum. This defect in the septum causes the deoxygenated blood from the right side to mix with the oxygenated blood from the left side. Propose some effects that would result from a hole in the heart.

11. Oxygen is carried in the blood by red blood cells. At high altitudes the body cannot take in as much oxygen because of the low atmospheric pressure, so to compensate the body produces more red blood cells. Even when one returns to low altitudes, these extra red blood cells remain for about two weeks. Using this information, propose a reason why athletes often train at high altitudes before a competition.

Answers

a) Carbon dioxide can be dissolved in the blood on the right side of heart.

b) Carbon dioxide

c) Oxygen-rich blood flows from the lungs to the left atrium.

8)  Circular Motion

9)Valves

10. Ventricular septum

11)  Higher altitudes have fewer oxygen molecules per volume of air.

What does carbon dioxide do to your body?

One carbon atom is covalently double linked to two oxygen atoms in each of the compounds that make up carbon dioxide, which has the molecular formula CO2. At ambient temperature, it exists as a vapour.

In the atmosphere, carbon dioxide serves as a greenhouse gas because it captures infrared energy despite being invisible to visible light. It has increased from pre-industrial values of 280 ppm to a minor gas in the Earth's atmosphere at 421 parts per million (ppm), or approximately 0.04% by volume (as of May 2022).

Learn more about carbon dioxide

https://brainly.com/question/3049557

#SPJ1

Other Questions
List the 4 universal steps people use to solve problems. You are working with a population of snails. During the mating season, you observe that individuals in the population will only mate with others of the same genotype (for example, Mm individuals will only mate with Mm individuals). There are only two alleles at this locus (M is dominant; m is recessive); you have determined that the frequency of the M allele = 0.4 and that selection acts against homozygous recessive individuals. Consider what will occur in this population over the course of many generations, and evaluate the following statement.TRUE OR FALSE: Allele frequencies will stay the same, but genotype frequencies will change over time. What is Silkscreen Printing A box of chocolates contains milk (M), white (W) and dark (D) chocolates. Each chocolate can have one of three centres: caramel (C), mint (M) or nut (N).a) How many different combinations of chocolate and centre are possible?b) One possible combination is milk and caramel. Write down all the other possible combinations, write your answers like this: (M, C) You must write all of your answers on one line. please helpsee below The information in paragraph 3 suggests that the author and his family Responses A had little business experience.had little business experience. B came from out West.came from out West. C valued independence.valued independence. D valued material items. hehe funny number of points Review the items below to make sure that your Python project file is complete. Once youve finished reviewing your conditional_snakes.py assignment, upload it to your instructor.1. Make sure your conditional_snakes.py program does the following things, in this order:a) Prints How many snakes are there? (Type an integer.)b) Prompts the user for input at the end of the string.c) Prints You see snakes! Run! (where n is the input value) if the value is an integer greater than 1.d) Prints You see 1 snake. Thats not so bad. if the value of the input is 1.e) Prints You dont see any snakes. What a relief! if the value of the input is 0.2. Make sure youve saved your program. TIP: If the conditional_snakes.py text editor window has an asterisk before the file name, you need to save your work. The population of country A was 40 million in the year 2000 and has grown continually in the yearsfollowing. The population P, in millions, of the country t years after 2000 can be modeled by the functionP(t) = 40e0.027, where t > 0.For another country, country B, the population M, in millions, t years after 2000 can be modeled by thefunction M(t) = 35e0.042t, where t 0.Based on the models, what year will be the first year in which the population of country B will be greaterthan the population of country A? math proportion calculation Assume that a company is considering purchasing a machine for $44,250 that will have a five-year useful life and no salvage value. The machine will lower operating costs by $17,000 per year. The companys required rate of return is 18%. The profitability index for this investment is closest to:Click here to view Exhibit 7B-1 and Exhibit 7B-2, to determine the appropriate discount factor(s) using the tables provided.Multiple Choice0.83.1.16.1.20.1.26. (35 pts) There is a pure exchange economy with two consumers, A and B, and two goods, 1 and 2. Consumer A has 3 units of good 1 and 6 units of good 2. Consumer B has 3 units of good 1 and 3 units of good 2. The two consumers have identical preferences given by U; = (+1)/(43)2/3 for i= AB (a) Suppose the price of good 2, P2, is normalized to 1. In a perfectly competitive market, solve the equilibrium price pi and the optimal allocation of consumption of consumer A and B. (12 pts) (b) Show in an Edgeworth box the initial allocation of endowment, the optimal allocation of consumption, the price line, and two consumers' indifference curves which go through the optimal allocation of con- sumption.(12 pts) (c) Find another allocation of endowment which can achieve the general equilibrium solved in question (11 pts) briefly explain 5solution to the problems of modern scienc e and technology A bag contains red, blue, and green tokens. Don randomlychooses one token from the bag, records the color, andreplaces the token before choosing another token. Heperforms the experiment 100 times. The final tally of theresults is shown in the table below. Suppose that today is January 1, 2003. A perpetuity makes annual payments, the first coming on January 1, 2011. The first payment is for 6140 dollars, and each payment up to (and including) the one on January 1, 2036 is 4.3 percent larger than the previous payment. After that, the payments increase by 400 dollars annually. What is the present value of the perpetuity today, assuming an effective rate of 8.2 percent?Answer = dollars blunderbluss manufacturing's balance sheets report $200 million in total debt, $77 million in short-term investments, and $47 million in preferred stock. blunderbluss has 10 million shares of common stock outstanding. a financial analyst estimated that blunderbuss's value of operations is $850 million. what is the analyst's estimate of the intrinsic stock price per share? round your answer to the nearest cent. How was Washington's term different from his first? Please help with this 60cm3 of carbon (||) oxide,(co) are sparked with 30cm3 of oxygen if all the volumed of the gases are measured at s.t.p. calculate the volume of the residual gases after sparking What is the name for intimate, fashionable, and intellectual gatherings hosted byaccomplished, educated Frenchwomen of the upper class? An analyst estimates that the probability of default on a seven-year AA-rated bond is 0.53, while that on a seven-year A-rated bond is 0.47. The probability that they will both default is 0.39.a. What is the probability that at least one of the bonds defaults? (Round your answer to 2 decimal places.)b. What is the probability that neither the seven-year AA-rated bond nor the seven-year A-rated bond defaults? (Round your answer to 2 decimal places.)c. Given that the seven-year AA-rated bond defaults, what is the probability that the seven-year A-rated bond also defaults? (Round your answer to 2 decimal places.)