Answer:
A
Explanation:
It is not c or b, D is not applicable so it must be A
4. Question: What effect does the amount of light have on plant growth?
A gas has a density of 1.57 g/L at 40.0 °C and 2.00 atm of pressure. What is the identity of the gas?
Answer:
Neon
Explanation:
Step 1: Given and required data
Density of the gas (ρ): 1.57 g/LTemperature (T): 40.0°CPressure (P): 2.00 atmIdeal gas constant (R): 0.08206 atm.L/mol.KStep 2: Convert T to Kelvin
We will use the following expression.
K = °C + 273.15 = 40.0 + 273.15 = 313.2 K
Step 3: Calculate the molar mass of the gas (M)
For an ideal gas, we will use the following expression.
ρ = P × M/R × T
M = ρ × R × T/P
M = 1.57 g/L × 0.08206 atm.L/mol.K × 313.2 K/2.00 atm
M = 20.17 g/mol
The gas with a molar mass of 20.17 g/mol is Neon.
In Chemistry, the gas with a molar mass of 20.18 g/mol is neon (Ne) and this is the identity of the gas.
Given the following data:
Density of gas = 1.57 g/LTemperature = 40.0°CPressure = 2.00 atmScientific data:
Ideal gas constant, R = 0.0821 L⋅atm/mol⋅KConversion:
Temperature = 40.0°C to K = [tex]273 +40=313\;K[/tex]
To determine the identity of this gas, we would apply the ideal gas law equation;
[tex]MM = \frac{R\rho T}{P}[/tex]
Where;
P is the pressure.MM is the molar mass of a gas.R is the ideal gas constant.T is the temperature.[tex]\rho[/tex] is the density of a gas.Substituting the given parameters into the formula, we have;
[tex]MM=\frac{0.0821 \times 1.57 \times 313}{2} \\\\MM=\frac{40.35}{2}[/tex]
Molar mass = 20.18 g/mol.
In Chemistry, the gas with a molar mass of 20.18 g/mol is neon (Ne).
Read more: https://brainly.com/question/20317432
PLEASE HELP IM TIMED
Which of the following is not an oxidation-reduction reaction?
Upper X e upper F subscript 6 (s) right arrow upper X e upper F subscript 4 (s) plus upper F subscript 2 (g).
2 upper C s (s) plus upper I subscript 2 (g) right arrow 2 upper C s upper I (s).
2 upper H subscript 2 upper S upper O subscript 4 (a q) plus 2 upper B a (upper O upper H) subscript 2 (a q) right arrow 2 upper B a upper S upper O subscript 4 upper H subscript 2 upper O (l).
Upper Z n (s) lus 2 upper A g upper N upper O subscript 3 (a q) right arrow upper Z n (upper N upper O subscript 3) subscript 2 (a q) plus upper A g (s).
Answer: choice 2
Explanation:
A beverage manufacturer wants to increase The solunility of carbon dioxide in its carbonated drinks as beverages produced which action will increase the solubility of CO2 gas the most
A. Decreasing the pressure on it
B. Increasing stirring
C. Decreasing its temperature
D. Increasing its temperature
Answer: C
Explanation:
Which energy transformation produces electricity and is least likely to negatively impact the environment?
Generating electricity from a natural gas-fired power plant
Generating electricity from a natural gas-fired power plant
Generating electricity from a coal-fired power plant
Generating electricity from a coal-fired power plant
Generating electricity from a nuclear power plant
Generating electricity from a nuclear power plant
Generating electricity from a solar panel system
Generating electricity from a solar panel system
electricity from solar panels
Explanation:
All other options produce something after or during the time electricity is made. That something is gas. Not solar
Conduction is the transfer of heat in?
gases
liquids
solids
Answer:
solids
Explanation:
What type of bond would be expected between Mg and Ti?
A.hydrogen bond
Bionic bond
C.covalent bond
D.metallic bond
What is the relationship between temperature and pressure
what elements make up duralumin( an alloy)?
Answer:
In addition to aluminium, the main materials in duralumin are copper, manganese and magnesium.
Answer:
The original composition has been varied for particular applications; it may contain about 4 percent copper, 0.5–1 percent manganese, 0.5–1.5 percent magnesium, and, in some formulations, some silicon.
What element has 2 occupied principals of energy levels
What are the signs of ΔH, ΔS, and ΔG for the spontaneous conversion of a crystalline solid into a gas?
Answer:
ΔH>0, ΔS>0, and ΔG<0
Explanation:
Crystalline solid → Gas
ΔG < 0 T as the reaction is Spontaneous The solid is converted into gas so the Entropy will increase as randomness is more in gas than solid, ΔS > 0using Gibbs equation
ΔG = ΔH - TΔS
as ΔG < 0 and ΔS > 0
ΔH - TΔS <0
ΔH < TΔS ⇒ΔH >0
This gives that ΔH will be Positive but it will be less than TΔS. So we need to provide some energy to convert crystalline solid into gas.
The periodic table is organized into groups and periods of elements. The characteristics of a certain group of elements are listed below. Which of these elements is in this group?
Characteristics of a group of elements
•is shiny
•is solid at room temperature
•has atoms with two valence electrons
A-silicone
B-lithium
C-strontium
D-aluminum
Answer:
C:Strontium
Explanation:
true or false???????????
Answer:
false
Explanation:
longer the wave length less frequency
PLEASE HELP ME! I am confused on this.
Answer:
Mohammed has less kinetic energy
Explanation:
m=Kg
V= m/s
KE= kinetic energy = J
the way you work out the answer is:
KE = 1/2 × m × v squared
20 POINTS
What is true about the Sun, light bulbs, and flames?
AThey are all made of fire.
BThey are all made by people.
CThey are all found in nature.
DThey are all sources of light energy.
Answer:
D
Explanation:
Light blubs are not made of fire.
The sun wasnt made by humans.
You cant find Light bulbs in nature.
Meaning it is D.
TRUE OR FALSE? Alloys are used more than pure metals because they are generally softer and less likely to react with air or water.
Alloys are used much more than pure metals because they are generally stronger and less likely to react with air or water...
So I would say false
1 point
Which element requires the least amount of energy to remove its valence electron(s)?
barium
chlorine
oxygen
carbon
When a material gains thermal energy and melts, it is undergoing a physical change.
Answer:
True, it undergoes a physical change.
Explanation:
A physical change is a change that does not change the chemical makeup of a material. This includes altering its shape.
25. Which of the following statements concerning atomic structure is/are correct?
1. The nucleus contains most of an atom's mass.
2. The nucleus contains all the positive charge of an atom.
3. Electrons surround the nucleus and account for the majority of an atom's volume.
1 only
2 only
3 only
2 and 3
1, 2, and 3
Answer:
It would be 2 and 3
The image shows the structure of an atom, I hope it helps :)
To see the number of atoms of an element in a given molecule we need to multiply stoichiometry to the number that is written on the foot of the element that is stoichiometry. Therefore, the correct option is option 2,3.
What is atom?Atom is the smallest particle of any element, molecule or compound. Atom can not be further divided. Atoms contains nucleus in its center and electron that revolve around the atom in fixed orbit.
In the nucleus, proton and neutron are present. Electron has -1 charge while proton has +1 charge. Neutron is neutral that is it has no charge. So overall the charge of nucleus is due to only proton, not by neutron. The nucleus contains all the positive charge of an atom. Electrons surround the nucleus and account for the majority of an atom's volume.
Therefore, the correct option is option 2,3.
To know more about atom, here:
https://brainly.com/question/13518322
#SPJ2
Calculate the number of atoms present in .20 moles of H20.
Answer:
20 moles = (96.7+)
345%20 moles inter = h20
h2+345%20 moles
kalkadanc = jani+CARSORI
564 MOLES
Explanation
we have to plus the moles that we can get the answer and u should now the formula of kalkadanc and just % will get to the correct answer.
i think u may understand and this is the correct answer i had practice this too much
What is the formula mass for (NH4)2C2O4
Answer:
124.1 g/mol
Explanation:
just facts
Answer:
124.1 g/mol
Explanation:
To calculate formula mass, multiply the subscript of each element in the formula by the element's atomic weight (relative atomic mass) found on the periodic table. The unit for formula mass is either u or Da (Daltons).
9.Ammonium nitrate (NH4NO3) can decompose to form gaseous water, nitrogen, and oxygen. What is the sum of the coefficients in the balanced chemical equation
Answer:
the sum of the coefficients in the balanced chemical equation is 9
Explanation:
The computation of the sum of the coefficients in the balanced chemical equation is shown below:
here is the balanced chemical equation
[tex]2NH_4NO_3 \rightarrow 4H_2O)g) + 2N_2(g) + 1O_2(g)[/tex]
Now the sum is
= 2 + 4 + 2 + 1
= 9
hence, the sum of the coefficients in the balanced chemical equation is 9
and, the same is to be considered
A scientist who collects and analyzes DNA from a crime scene is a
Answer:
forensic scientist
Explanation:
forensic science is the discipline in which professionals use scientific means to analyze physical crime evidence. this evidence is then presented in court in order to help determine the innocence or guilt of a specific suspect.
Answer:
Its a forensic scientist :D
Explanation:
I took a test and got it wrong but it showed the right answer and its a forensic scientist
(don't ask how i got it wrong i was rushing!!)
formal charge of hcooh
Answer:
What is the question?
in the following chemical reaction between H_2 and Cl_2 to produce HCl, what is the sum of the mass of HCl produced plus the mass of left over reactants when 0.40 g of H_2 completely reacts with 12.35 g of Cl_2?
H_2(g) + Cl_2(g) → 2HCl(g)
Answer:
Left over mass of hydrogen = 0.06 g
Mass of HCl produced = 12.41 g
Explanation:
Given data:
Mass of H₂ = 0.40 g
Mass of Cl₂ = 12.35 g
Mass of left over reactant = ?
Mass of HCl produced = ?
Solution:
Chemical equation:
H₂ + Cl₂ → 2HCl
Number of moles of H₂:
Number of moles = mass / molar mass
Number of moles = 0.40 g/ 2 g/mol
Number of moles = 0.2 mol
Number of moles of Cl₂:
Number of moles = mass / molar mass
Number of moles = 12.35 g/ 71 g/mol
Number of moles = 0.17 mol
Now we will compare the moles of HCl with H₂ and Cl₂.
H₂ : HCl
1 : 2
0.2 : 2×0.2 = 0.4
Cl₂ : HCl
1 : 2
0.17 : 2 × 0.17 = 0.34
Chlorine is limiting reactant.
Mass of HCl produced:
Mass = number of moles × molar mass
Mass = 0.34 mol × 36.5 g/mol
Mass = 12.41 g
Leftover mass of hydrogen:
Cl₂ : H₂
1 : 1
0.17 : 0.17
Number of moles of H₂ react with Cl₂ are 0.17.
Moles remain unreacted = 0.2 - 0.17 = 0.03 mol
Mass left over:
Mass = number of moles × molar mass
Mass = 0.03 mol × 2 g/mol
Mass = 0.06 g
The sum of the mass of HCl produced plus the mass of left over reactants is:
Mass of hydrogen = 0.06 g
Mass of HCl = 12.41 g
Chemical ReactionGiven:
Mass of H₂ = 0.40 g
Mass of Cl₂ = 12.35 g
Mass of left over reactant = ?
Mass of HCl produced = ?
Chemical equation: H₂ + Cl₂ → 2HClNumber of moles of H₂:
Number of moles = mass / molar mass
Number of moles = 0.40 g/ 2 g/mol
Number of moles = 0.2 mol
Number of moles of Cl₂:
Number of moles = mass / molar mass
Number of moles = 12.35 g/ 71 g/mol
Number of moles = 0.17 mol
The moles of HCl with H₂ and Cl₂.
H₂ : HCl
1 : 2
0.2 : 2×0.2 = 0.4
Cl₂ : HCl
1 : 2
0.17 : 2 × 0.17 = 0.34
The chlorine is limiting reactant.
Mass of HCl produced:
Mass = number of moles × molar mass
Mass = 0.34 mol × 36.5 g/mol
Mass = 12.41 g
Leftover mass of hydrogen:
Cl₂ : H₂
1 : 1
0.17 : 0.17
Number of moles of H₂ react with Cl₂ are 0.17.
Moles remain unreacted = 0.2 - 0.17 = 0.03 mol
Mass left over:
Mass = number of moles × molar massMass = 0.03 mol × 2 g/molMass = 0.06 gLearn more about "Moles":
https://brainly.com/question/7287712?referrer=searchResults
What volume. In liters, of H2O(g) measured at STP is produced by the combustion of 15.63 g of natural gas (CH4) according to the following equation? CHale) +20269) CO2 + 2H2008)
Answer:
V = 43.95 L
Explanation:
Given data:
Mass of CH₄ decomposed = 15.63 g
Volume of H₂O produced at STP = ?
Solution:
Chemical equation:
CH₄ + 2O₂ → 2H₂O + CO₂
Number of moles of CH₄:
Number of moles = mass/molar mass
Number of moles = 15.63 g/ 16 g/mol
Number of moles = 0.98 mol
Now we will compare the moles of H₂O with CH₄.
CH₄ : H₂O
1 : 2
0.98 : 2×0.98 = 1.96 mol
Volume of hydrogen:
PV = nRT
1 atm × V = 1.96 mol × 0.0821 atm.L/mol.K × 273.15 K
V = 43.95atm.L / 1atm
V = 43.95 L
On average what is the time between collisions of a xenon atom at 300 K and (a) one torr pressure; (b) one bar pressure.
Answer:
(a). 132 × 10^-9 s = 132 nanoseconds.
(b)..176.5 pico-seconds.
Explanation:
(a). At one torr, the first thing to do is to find the speed and that can be done by using the formula below;
Speed = [ (8 × R × T)/ Mm × π]^1/2.
Where Mm = molar mass, T = temperature and R = gas constant.
Speed= [ ( 8 × 8.314 × 300)/ 131.293 × π × 10^-3)^1/2. = 220m/s.
The next thing to do now is to calculate for the degree of collision which can be calculated by using the formula below;
Degree of collision = √2 × π × speed × d^2 × pressure/ K × T.
Note that pressure = 1 torr = 133.32 N/m^2 and d = collision diameter.
Degree of collision = √2 × π × 220 × (4.9 × 10^-10)^2 × 133.32/ 1.38 × 10^-23 × 300.
Degree of collision = 7.55 × 10^6 s^-1.
Thus, 1/ 7.55 × 10^6. = 132 × 10^-9 s = 132 nanoseconds.
(b). At one bar;
1/10^5 × 10^3 × 56.65 = 1.765 × 10^-10 = 176.5 pico-seconds.
Why do gases diffuse more quickly than liquids?
Choose the correct answer.
A) Liquids can be compressed easily.
B)The particles in gases are not mobile.
C)Liquids are always at lower temperatures than gases.
D)Gas particles move rapidly and have space between them.
Answer:
D)Gas particles move rapidly and have space between them.
Explanation:
Matter exists in three states namely: solids, liquids and gases. The particles contained in these three states are different from one another. In the gaseous state, the particles are FAR APART from one another i.e. space exists and they move at a very fast rate in contrast to the particles of a liquid, which have less space and move slower.
This rapid movement of gas particles within a less restricted space accounts for the reason why gaseous substances DIFFUSE more quickly than liquids.
A chemical change combining two elements results in?
Answer:
When two distinct elements are chemically combined for example, chemical bonds form between their atoms, the result is called a chemical compound. Most elements on Earth bond with other elements to form chemical compounds, such as sodium and Chloride, which combine to form table salt.
What does the group number plus number of bonds equal?
It’s talking about the periodic table
Answer:
A stable compound with a complete octet or electronic configuration
Explanation:
The Periodic table is the arrangements of chemical elements in horizontal rows (called 'Periods') and vertical columns (called 'Groups') based on their various physical and chemical properties.
Elements in the same group have a common quality being that they have the same number of free (valent) electrons in their outermost shell. For example, elements in group 1 all have one valent electron in the outermost shell as compared to elements in group 5 which have five valent electrons in the outermost shell. Therefore the group number tells us the number of valence electrons of all the elements in that group.
Meanwhile, elements in the same period have the same number of outermost shell but an increasing number of valence electrons as one goes across the period from left to right.
Elements form chemical bonds in an effort to achieve chemical stability. Chemical stability is achieved when the shells of the elements are fully filled with electrons and achieved a stable electronic configuration of 2 or 8.
The type of bonds formed depend on the number of valence electrons available for bonding in the outermost shell of the element.
So the element Oxygen for example which has 6 valence electrons, in its outermost shell tends to form covalent bonds (a bond achieved by sharing electrons). It is easier for oxygen to form a covalent bond by sharing its valence electrons with another element than to lose all six valence electrons in order to achieve a stable octet state
The element Chlorine (Cl, with seven valence electrons) on the other hand tends to form electrovalent or ionic bonds by accepting an electron from a metal element like Sodium (Na) to achieve a complete octet. It is easier for Cl to achieve a stable octet state by accepting an electron than losing all 7 valence electrons.
Therefore, the group number (an indicator of the number of valence electrons in the outermost shell) plus the number of bonds formed equals a stable atom or compound with a complete electronic configuration.