Answer:
The answer is LINEAR EQUATIONS
Step-by-step explanation:
Hope you have a great day :)
What is the domain?
A
B
C
D
Answer:
C
Step-by-step explanation:
1. The domain is the x-value of a function.
2. In that image, the x-values are the numbers on the left of each parenthesis.
3. You should put the domains in increasing order, so the final answer is -2, 0, 2, 4.
question in the image
is 2 a solution to the equation 1/2 x 4 = 5 ?
Answer:
yes it is good luck with your work
10x -5 = 15
O X = 10
X =-1
x = 2
O X= -2
Answer:
0
Step-by-step explanation:
Anything multiplied by 0 is 0. sorry if i did it wrong
A radioactive substance with initial value of 800g decays according to the exponential model A= 800e^(kt). After 10 years, only 400g of the substance remains. Find the value of k. Round your answer to the nearest thousandth. NO LINKS!!!!
Answer:
k ≈ - 0.069
Step-by-step explanation:
Given
A = 800 [tex]e^{kt}[/tex]
Substitute A = 400 and t = 10 into the equation
400 = 800 [tex]e^{10k}[/tex] ( divide both sides by 800 )
0.5 = [tex]e^{10k}[/tex] ( take the ln of both sides )
ln [tex]e^{10k}[/tex] = ln0.5
10k lne = ln0.5 [ lne = 1 ]
10k = ln 0.5 ( divide both sides by 10 )
k = [tex]\frac{ln0.5}{10}[/tex] ≈ 0.069 ( to the nearest thousandth )
Answer:
Step-by-step explanation:
400 = 800 * e^(k*t)
What are the units of t? I'm taking it as years.
Divide by 800
400/800 = e^(k*10)
1/2 = e^(k*10)
ln(1/2) = ln(e)^(k*10)
ln(1/2) = k*10 * ln(e)
ln(e) = 1
-0.69314 = k*10
-0.069314 = k
Check
A = 800 e^(-0.069314*10)
A = 800 e^(-0.69314)
A = 800 * 0.50000359
A = 400.0028722
Which is close enough to 400
A countries population in 1993 was 253 million. In 1999 it was 237 million. Estimate the population in 2007 using the exponential growth formula. round your answer to the nearest million.
Note: When solving for k, round to four decimal places.
Answer:
240 million
Step-by-step explanation:
I took the application
Which phrase best describes the figure below?
Answer:
B.
Step-by-step explanation:
It only has one base and it's a pentagon. Therefore, it's a pentagonal pyramid.
Please help me. Photo provided
PLEASE HELP I DONT KNOW
Answer:
the answer is d circumference
2. Use the image to answer the questions.
(a) What is the center and the radius of the circle?
(b) What are the equations of the circle in graphing form and in general form? Show your work.
Answer:
Center = (-1, 1)
Radius = 3
Graphing form
(x + 1)² + (y - 1)² = 3²
General form
x² + y² + 2x - 2y - 7 = 0
Step-by-step explanation:
Center = (-1, 1)
Radius = 3
Graphing form
(x + 1)² + (y - 1)² = 3²
General form \Expand graphing form\
(x² + 2x + 1) + (y² - 2y + 1) - 9 = 0
Rearrange
x² + y² + 2x - 2y - 7 = 0
Is anyone good at geometry if so can someone help me please ?
NO LINKS PLEASE
Answer: 9
Step-by-step explanation: h=2(A/a+b)=2(66.66/4.9+9.9)=9.01
Robin has a rectangular picture frame that is 8 1/2 by 11 inches. What is the
approximate perimeter of the picture frame in centimeters?
Answer: 99.06cm
Step-by-step explanation:
Note that 1 inch = 2.54cm
Therefore, we'll convert the sides of the frame in inches to cm. This will be:
8 1/2 inch = 8.5 × 2.54cm = 21.59cm
11inches = 11 × 2.54cm = 27.94cm
Therefore, the perimeter of a rectangle will be:
= 2(length + width)
= 2(27.94 + 21.59)
= 2(49.53)
= 99.06cm
sin 0 =(8)/(9), tan 0 >0
find sec 0
Answer:
[tex]\displaystyle \sec(\theta)=\frac{9\sqrt{17}}{17}[/tex]
Step-by-step explanation:
We are given that:
[tex]\displaystyle \sin(\theta)=\frac{8}{9}\text{ and } \tan(\theta)>0[/tex]
And we want to find sec(θ).
First, note that both sine and tangent are positive. The only quadrant in which this can occur is QI. Hence, all trig ratios will be positive.
Also, recall that sine is the ratio of the opposite side to the hypotenuse. Using this information and the Pythagorean Theorem, we can determine the adjacent side:
[tex]a=\sqrt{9^2-8^2}=\sqrt{17}[/tex]
So, with respect to θ, the adjacent side is √(17), the opposite side is 8, and the hypotenuse is 9.
Secant is the ratio of the hypotenuse to the adjacent. Hence:
[tex]\displaystyle \sec(\theta)=\frac{9}{\sqrt{17}}=\frac{9\sqrt{17}}{17}[/tex]
Again, since θ is in QI, all trig ratios are positive.
I need this please help me
Answer:
C. Reflection over x- axis, down 6 right 3
Step-by-step explanation:
What is the greatest common factor of 12 and 20?
OA) 2
O B) 3
4
D) 6
Answer:
4
Step-by-step explanation:
You can divide both numbers by four and get an even answer
Answer:
4
Step-by-step explanation:
HELP PLZ! WILL GIVE BRAINLIEST.
The table shows the percentage of users of a data tablet who returned the product to an Internet provider within a year after purchase, after a year, and the reasons for the return.
Answer:
ur answer is correct only
Step-by-step explanation:
mark me brainlist tq
Answer:
dependent events
How many students scored below 80?
11
19
cannot be determined from the histogram
9
Answer:
11
Step-by-step explanation:
Jovi distributed 3(n+2) and got 3 x n + 3 x 6 is his answer correct
Answer:
Step-by-step explanation:
since 3 is outside the parenthesis (n + 2) you multiply the 3 by the n and the 2 and
3n + 6
next subtract the 6 and add the 6 to the other side
3n - 6 = 6
3n = 6
n = 2
The lengths of adult males' hands are normally distributed with mean 187 mm and standard deviation is 7.1 mm. Suppose that 12 individuals are randomly chosen. Round all answers to 4 where possible. What is the distribution of ¯ x
Answer:
By the Central Limit Theorem, the distribution of ¯ x is approximately normal with mean 187 and standard deviation 2.05.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The lengths of adult males' hands are normally distributed with mean 187 mm and standard deviation is 7.1 mm.
This means that [tex]\mu = 187, \sigma = 7.1[/tex]
Suppose that 12 individuals are randomly chosen.
This means that [tex]n = 12, s = \frac{7.1}{\sqrt{12}} = 2.05[/tex]
What is the distribution of ¯ x?
By the Central Limit Theorem, the distribution of ¯ x is approximately normal with mean 187 and standard deviation 2.05.
Can someone help me with this part A: Members of a high school sports team are selling two popular items for a fundraiser:
candy bars and bags of chips. They earn $0.75 for every candy bar they sell and $0.50 for every
Dag of chips. The members want to earn at least $100 from all sales. The members of the sport
team estimate that they won't be able to sell more than 200 units in total.
Part A: Select all the inequalities that model the constraints for this situation, where x
represent the number of candy bars sold and y represent the number of bags of chips.
A. x 20
B. y20
C. x +y s 100
D. x + y < 200
E. 0.75x + 0.50y
100
F. 0.50x + 0.75y > 100
An
Step-by-step explanation:
Cx+y s 100
Answer:
All the inequalities that model the constraints for this situation:
(d) x + y < 200 ;
(e) 0.75 x + 0.50 y ≥ 100
Step-by-step explanation:
What is inequality ?A statement of an order relationship—greater than, greater than or equal to, less than, or less than or equal to—between two numbers or algebraic expressions.
As, x represent the number of candy bars sold & y represent the number of bags of chips sold.
It is given that,
price for one candy bar = $0.75
also, price for one dag of chips = $0.50
So, price for 'x' candy bar = $0.75x
also, price for 'y' of chips = $0.50 y
Is is mentioned in question, the sale of candy bar and bag of chips shoud be atleast $100.
the First ineqaulity be,
0.75 x + 0.50 y ≥100
(which should the sales of candy baar and dag of chips be equal to 100 dollar or greater than 100 dollar)
Now, the second situation
Again, it is mentioned in the question is number of units (candy bar and dag of chips) should be not more than 200 units.
the second inequality be,
x+ y < 200
(which shows that number of candy bar and dag of chips should be less than 200 units.)
All the inequalities that model the constraints for this situation
(d) x + y < 200
(e) 0.75 x + 0.50 y ≥100
Learn more about inequalities here:
https://brainly.com/question/20383699
#SPJ2
35 points
(algebra one)
describe and correct the error in comparing the graphs
How do the angles and side lengths of the preimage relate to the corresponding angles and side lengths of the image of a dilation with a scale factor not equal to 1?
Answer:
The angles are proportional and the side lengths are proportional.
Step-by-step explanation:
Savaas Realize
Help me I’ll make you expert !
Qu
Peter hired a cleaning company to clean his house. The cleaning company charges a
fixed fee of $15 plus $17 per hour to clean a house.
a. Write an equation that can be used to determine, c, the total amount in dollars that
the cleaning company charges to clean a house in h hours.
To find the total cost you need to multiply the hourly rate by the number of hours they work and add the fixed fee.
C = 17h + 15
A bank is offering 3.5% simple interest on a savings account. If you earned $525 in interest
in 2 years, how much did you deposit in the savings?
O $7,500
O $8,000
O $7.250
$7.000
Answer:
$7500
Step-by-step explanation:
Given
[tex]I = 525[/tex]
[tex]R = 3.5\%[/tex]
[tex]T =2[/tex]
Required
The Principal
This is calculated using:
[tex]I =PRT[/tex]
Make P the subject
[tex]P = \frac{I}{RT}[/tex]
So, we have:
[tex]P = \frac{525}{3.5\% * 2}[/tex]
[tex]P = \frac{525}{7.0\%}[/tex]
[tex]P = 7500[/tex]
Grandma decides to pay for her new granddaughter's education. She gives
her one penny on her first birthday, and doubles the gift every year. Round
to the nearest hundredth. Do not use a dollar sign, numerical values only.
What will be the total of all the gifts on the girl's 18th birthday?
Answer:
Around 0.40
Step-by-step explanation
If she doubles the gift every year, do 18x2=36, 36 rounds to 40 or 0.40.
The total of all the gifts on the girl's 18th birthday given from her grandma for this considered case is evaluated as 2621.43 dollars
What is the sum of the terms of a geometric series till nth term?Lets suppose the geometric sequence has its initial term is [tex]a[/tex], multiplication factor is r, then, its sum is given as:
[tex]S_n = \dfrac{a(r^n-1)}{r-1}[/tex]
(sum till nth term)
The sequence would look like [tex]a, ar, \cdots, ar^{n-1},\cdots[/tex]
For this case, we are specified that:
Grandma gives 1 penny on first birthday of her granddaughterGrandma increases the gift by doubling the previous birthday gift.That shows that the gift amounts each year will form a geometric sequence where a = 1, and r = 2 (as amounts are doubled).
The gift amounts would look like:
[tex]\\1, 2, 4, \cdots\\or\\1, 2\times 1, 2^2 \times 1, \cdots[/tex]
We have to find these terms' sum till 18th term(18th term is the gift of her 18th birthday).
Thus, we have: n = 18, a = 1, and r = 2.
The sum will be:
[tex]S_n = \dfrac{a(r^n-1)}{r-1} = \dfrac{1(2^{18}-1)}{2-1} = 2^{18} - 1 = 262143 \: \rm cents[/tex]
There are 100 cents in 1 dollars,
Thus, 1 cent = 0.01 dollars,
and thus, 262143 cents form 2621.43 dollars.
Thus, the total of all the gifts on the girl's 18th birthday given from her grandma for this considered case is evaluated as 2621.43 dollars
Learn more about sum of terms of geometric sequence here:
https://brainly.com/question/1607203
HELP WITH THIS ASAP!
Answer:
Hi, there your answer will C. 85pi ft^2
Step-by-step explanation:
pi(5)(12)+pi(5)^2
60pi+25pi
85pi ft^2
Hope this helps :)
Two fair 6-sided dice are rolled one at a time. Find the probability that
the first die lands on a value greater than 4 and the second die lands
on 2.
Answer:
Step-by-step explanation:
Carol is making a pattern with toothpicks. The first five terms of Carol's pattern are shown.
Which expression can be used to find the number of toothpicks in Term n?
A. n +1
B. n +2
C. nt3
Ο Ο
D. 3n
E. 3n + 1
Answer:
B
Step-by-step explanation:
Let's make a table:
Term 1: 3 toothpicks
Term 2: 4 toothpicks
Term 3: 5 toothpicks
Term 4: 6 toothpicks
Term 5: 7 toothpicks
Term N = N + 2 toothpicks
Question 2 Solve the problem below using a graphing calculator. Estimate o points
your answer to four decimal places
X^2= 4/x + ln(x)
A 1.5874
B 1.4596
C. 1.7241
D. 1.6985